Integrative analysis of metabolome and transcriptome reveals molecular regulatory mechanism of flavonoid biosynthesis in Cyclocarya paliurus under salt stress

被引:49
|
作者
Zhang, Lei [1 ]
Zhang, Zijie [1 ]
Fang, Shengzuo [1 ,2 ]
Liu, Yang [1 ]
Shang, Xulan [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Coll Forestry, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing 210037, Peoples R China
关键词
Cyclocarya paliurus; Flavonoid content; Flavonoid pathway; Regulatory network; Transcription factors; Salt concentration; ANTHOCYANIN BIOSYNTHESIS; SECONDARY METABOLITES; GENE-EXPRESSION; ANTIOXIDANT; QUERCETIN; TOLERANCE; STRINGTIE; SALINITY; OMICS; NACL;
D O I
10.1016/j.indcrop.2021.113823
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Cyclocarya paliurus is a highly valued and multiple function tree species, and especially its leaves are enriched in diverse secondary metabolites with healthy function. Flavonoids as a kind of secondary metabolites are not only an important part of plant defense system against environmental stresses but also commercial pharmaceutical substances. To meet the leaf production for value-added product development, coastal saline would be a potential land resources for developing C. paliurus plantations, whereas there is limited knowledge on the regulatory mechanisms of flavonoid biosynthesis under salt stress in C. paliurus. Here, we conducted an integrated transcriptomics and metabolomics analysis of C. paliurus under different salt treatments in the short (T1, treatment lasted for 15 days) and long (T2, treatment lasted for 30 days) term. Generally, salt treatments led to increased total flavonoid content in C. paliurus leaves, which increased gradually along with salt stress concentration. For instance, after seedlings were salt-treated with LS (0.15 %), MS (0.30 %) and HS (0.45 %), the total flavonoid content was increased by 26.23 %, 57.54 %, and 74.87 %, respectively, compared with the control (0.00 %, m/v) at T1. Correspondingly, significant enrichment of differentially expressed genes and metabolites was observed in the flavonoid biosynthesis pathways. Weighted gene co-expression network analysis (WGCNA) identified several key genes regulating the responses to salt stress, such as genes encoding phenylalanine ammonia lyase (PAL), chalcone synthase (CHS) and flavonol synthase (FLS). In addition, fifteen transcription factors (TFs) were found to regulate flavonoid biosynthesis by activating or repressing the expression of multiple structural genes in C. paliurus leaves during salt stress. These findings provide insight into the salt stress associated transcriptional regulation, and would drive progress in genetic improvement and plantation development of C. paliurus.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Integrative analysis of metabolome and transcriptome reveals anthocyanins biosynthesis regulation in grass species Pennisetum purpureum
    Zhou, Sifan
    Chen, Jing
    Lai, Yunsong
    Yin, Guohua
    Chen, Peilin
    Pennerman, Kayla K.
    Yan, Haidong
    Wu, Bingchao
    Zhang, Huan
    Yi, Xianfeng
    Wang, Chengran
    Fu, Maojie
    Zhang, Xinquan
    Huang, Linkai
    Ma, Xiao
    Peng, Yan
    Yan, Yanhong
    Nie, Gang
    Liu, Lin
    INDUSTRIAL CROPS AND PRODUCTS, 2019, 138
  • [42] Integrative analysis of the transcriptome and metabolome reveals the response mechanism to tomato spotted wilt virus
    Junheng Lv
    Minghua Deng
    Zuosen Li
    Haishan Zhu
    Ziran Wang
    Yanling Yue
    Zhengan Yang
    Junqiang Xu
    Shurui Jiang
    Wei Zhao
    Jing Li
    Kai Zhao
    HorticulturalPlantJournal, 2023, 9 (05) : 958 - 970
  • [43] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit
    Gan, Sichen
    Zheng, Gang
    Zhu, Shoukuo
    Qian, Jieyu
    Liang, Lijun
    METABOLITES, 2022, 12 (02)
  • [44] Integrative analysis of the transcriptome and metabolome reveals the response mechanism to tomato spotted wilt virus
    Lv, Junheng
    Deng, Minghua
    Li, Zuosen
    Zhu, Haishan
    Wang, Ziran
    Yue, Yanling
    Yang, Zhengan
    Xu, Junqiang
    Jiang, Shurui
    Zhao, Wei
    Li, Jing
    Zhao, Kai
    HORTICULTURAL PLANT JOURNAL, 2023, 9 (05) : 958 - 970
  • [45] Metabolome and Transcriptome Analysis Reveals the Transcriptional Regulatory Mechanism of Triterpenoid Saponin Biosynthesis in Soapberry (Sapindus mukorossi Gaertn.)
    Xu, Yuanyuan
    Zhao, Guochun
    Ji, Xiangqin
    Liu, Jiming
    Zhao, Tianyun
    Gao, Yuan
    Gao, Shilun
    Hao, Yingying
    Gao, Yuhan
    Wang, Lixian
    Weng, Xuehuang
    Chen, Zhong
    Jia, Liming
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (23) : 7095 - 7109
  • [46] Integrated transcriptome and proteome analysis reveals complex regulatory mechanism of cotton in response to salt stress
    CHEN Lin
    SUN Heng
    KONG Jie
    XU Haijiang
    YANG Xiyan
    JournalofCottonResearch, 2021, 4 (02) : 91 - 103
  • [47] Integrated transcriptome and proteome analysis reveals complex regulatory mechanism of cotton in response to salt stress
    Chen Lin
    Sun Heng
    Kong Jie
    Xu Haijiang
    Yang Xiyan
    JOURNAL OF COTTON RESEARCH, 2021, 4 (01)
  • [48] Integrated transcriptome and proteome analysis reveals complex regulatory mechanism of cotton in response to salt stress
    Lin CHEN
    Heng SUN
    Jie KONG
    Haijiang XU
    Xiyan YANG
    Journal of Cotton Research, 4
  • [49] Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.)
    Hou, Yaling
    Zeng, Wenzhi
    Ao, Chang
    Huang, Jiesheng
    JOURNAL OF BIOTECHNOLOGY, 2024, 383 : 39 - 54
  • [50] Combined Analysis of the Fruit Metabolome and Transcriptome Reveals Candidate Genes Involved in Flavonoid Biosynthesis in Actinidia arguta
    Li, Yukuo
    Fang, Jinbao
    Qi, Xiujuan
    Lin, Miaomiao
    Zhong, Yunpeng
    Sun, Leiming
    Cui, Wen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (05)