Integrative analysis of metabolome and transcriptome reveals molecular regulatory mechanism of flavonoid biosynthesis in Cyclocarya paliurus under salt stress

被引:49
|
作者
Zhang, Lei [1 ]
Zhang, Zijie [1 ]
Fang, Shengzuo [1 ,2 ]
Liu, Yang [1 ]
Shang, Xulan [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Coll Forestry, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing 210037, Peoples R China
关键词
Cyclocarya paliurus; Flavonoid content; Flavonoid pathway; Regulatory network; Transcription factors; Salt concentration; ANTHOCYANIN BIOSYNTHESIS; SECONDARY METABOLITES; GENE-EXPRESSION; ANTIOXIDANT; QUERCETIN; TOLERANCE; STRINGTIE; SALINITY; OMICS; NACL;
D O I
10.1016/j.indcrop.2021.113823
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Cyclocarya paliurus is a highly valued and multiple function tree species, and especially its leaves are enriched in diverse secondary metabolites with healthy function. Flavonoids as a kind of secondary metabolites are not only an important part of plant defense system against environmental stresses but also commercial pharmaceutical substances. To meet the leaf production for value-added product development, coastal saline would be a potential land resources for developing C. paliurus plantations, whereas there is limited knowledge on the regulatory mechanisms of flavonoid biosynthesis under salt stress in C. paliurus. Here, we conducted an integrated transcriptomics and metabolomics analysis of C. paliurus under different salt treatments in the short (T1, treatment lasted for 15 days) and long (T2, treatment lasted for 30 days) term. Generally, salt treatments led to increased total flavonoid content in C. paliurus leaves, which increased gradually along with salt stress concentration. For instance, after seedlings were salt-treated with LS (0.15 %), MS (0.30 %) and HS (0.45 %), the total flavonoid content was increased by 26.23 %, 57.54 %, and 74.87 %, respectively, compared with the control (0.00 %, m/v) at T1. Correspondingly, significant enrichment of differentially expressed genes and metabolites was observed in the flavonoid biosynthesis pathways. Weighted gene co-expression network analysis (WGCNA) identified several key genes regulating the responses to salt stress, such as genes encoding phenylalanine ammonia lyase (PAL), chalcone synthase (CHS) and flavonol synthase (FLS). In addition, fifteen transcription factors (TFs) were found to regulate flavonoid biosynthesis by activating or repressing the expression of multiple structural genes in C. paliurus leaves during salt stress. These findings provide insight into the salt stress associated transcriptional regulation, and would drive progress in genetic improvement and plantation development of C. paliurus.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An Integrative Analysis of Metabolome and Transcriptome Reveals the Molecular Regulatory Mechanism of the Accumulation of Flavonoid Glycosides in Different Cyclocarya paliurus Ploidies
    Yu, Yanhao
    Qu, Yinquan
    Wang, Shuyang
    Wang, Qian
    Shang, Xulan
    Fu, Xiangxiang
    FORESTS, 2023, 14 (04):
  • [2] Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress
    Wang, Yubin
    Liu, Wei
    Li, Wei
    Wang, Caijie
    Dai, Haiying
    Xu, Ran
    Zhang, Yanwei
    Zhang, Lifeng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [3] Metabolome and Transcriptome Analyses Unravel the Molecular Regulatory Mechanisms Involved in Photosynthesis of Cyclocarya paliurus under Salt Stress
    Zhang, Lei
    Zhang, Zijie
    Fang, Shengzuo
    Liu, Yang
    Shang, Xulan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
  • [4] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Flavonoid Biosynthesis in Lithocarpus polystachyus Rehd
    Zhang, Duoduo
    Wang, Shuqing
    Lin, Limei
    Zhang, Jie
    Cui, Minghui
    Wang, Shuo
    Zhao, Xuelei
    Dong, Jing
    Long, Yuehong
    Xing, Zhaobin
    ACS OMEGA, 2022, 7 (23): : 19437 - 19453
  • [5] Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain
    Wang, Jiaqi
    Li, Lu
    Wang, Zhihua
    Feng, Anran
    Li, Huiling
    Qaseem, Mirza Faisal
    Liu, Liting
    Deng, Xiaomei
    Wu, Ai-Min
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 246
  • [6] Integrative Metabolome and Transcriptome Analysis Reveals the Regulatory Network of Flavonoid Biosynthesis in Response to MeJA in Camellia vietnamensis Huang
    Yan, Heqin
    Zheng, Wei
    Wang, Yong
    Wu, Yougen
    Yu, Jing
    Xia, Pengguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [7] Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals
    Xi Xia
    Rui Gong
    Chunying Zhang
    BMC Plant Biology, 22
  • [8] Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals
    Xia, Xi
    Gong, Rui
    Zhang, Chunying
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [9] Metabolome and transcriptome analysis reveals molecular mechanisms of watermelon under salt stress
    Liu, Ying
    Zhang, Weihua
    Elango, Dinakaran
    Liu, Haixue
    Jin, Dandan
    Wang, Xiaoyu
    Wu, Ying
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 206
  • [10] Integrative analysis of transcriptome and metabolome reveal molecular mechanism of tolerance to salt stress in rice
    Deng, Rui
    Li, Yao
    Feng, Nai-Jie
    Zheng, Dian-Feng
    Khan, Aaqil
    Du, You-Wei
    Zhang, Jian-Qin
    Sun, Zhi-Yuan
    Wu, Jia-Shuang
    Xue, Ying-Bin
    Huang, Zi-Hui
    BMC PLANT BIOLOGY, 2025, 25 (01):