Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions

被引:10
作者
Li, Hongfei [1 ]
Pan, Cheng [1 ]
Zhao, Sijia [1 ]
Liu, Ping [2 ]
Zhu, Yimei [3 ]
Rafailovich, Miriam H. [1 ]
机构
[1] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA
[2] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[3] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
PEM fuel cell; Gold nanoplatelets; CO oxidation; SUPPORTED GOLD CATALYSTS; NANOPARTICLES; EXCHANGE; MEMBRANES; MOLECULES; SOLIDS; SITES;
D O I
10.1016/j.jcat.2016.03.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have developed a method for fabrication of Au nanoparticle platelets which can be coated onto the Nafion membranes of polymer electrolyte membrane (PEM) fuel cells simply by Langmuir-Blodgett (LB) trough lift off from the air water interface. Incorporating the coated membranes into fuel cells with one membrane electrode assembly (MEA) enhanced the maximum power output by more than 50% when operated under ambient conditions. An enhancement of more than 200% was observed when 0.1% CO was incorporated into the H-2 input gas stream and minimal enhancement was observed when the PEM fuel cell was operated with 100% O-2 gas at the cathode, or when particles were deposited on the electrodes. Density function theory (DFT) calculations were carried out to understand the origin of improved output power. Au NPs with 3-atomic layer in height and 2 nm in size were constructed to model the experimentally synthesized Au NPs. The results indicated that the Au NPs interacted synergistically with the SO3 groups, attached at end of Nafion side chains, to reduce the energy barrier for the oxidation of CO occurring at the perimeter of the Au NPs, from 1.292 eV to 0.518 eV, enabling the reaction to occur at T < 300 K. (C) 2016 Published by Elsevier inc.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 30 条
[1]   Carbon monoxide poisoning of proton exchange membrane fuel cells [J].
Baschuk, JJ ;
Li, XG .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2001, 25 (08) :695-713
[2]   SYNTHESIS OF THIOL-DERIVATIZED GOLD NANOPARTICLES IN A 2-PHASE LIQUID-LIQUID SYSTEM [J].
BRUST, M ;
WALKER, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
WHYMAN, R .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1994, (07) :801-802
[3]  
Carrette L, 2000, CHEMPHYSCHEM, V1, P162, DOI 10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO
[4]  
2-Z
[5]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[6]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[7]   Recent developments in proton exchange membranes for fuel cells [J].
Devanathan, Ram .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :101-119
[8]   Mechanism of the water gas shift reaction on Pt: First principles, experiments, and microkinetic modeling [J].
Grabow, Lars C. ;
Gokhale, Amit A. ;
Evans, Steven T. ;
Dumesic, James A. ;
Mavrikakis, Manos .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (12) :4608-4617
[9]   Inhibition at Perimeter Sites of Au/TiO2 Oxidation Catalyst by Reactant Oxygen [J].
Green, Isabel Xiaoye ;
Tang, Wenjie ;
McEntee, Monica ;
Neurock, Matthew ;
Yates, John T., Jr. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (30) :12717-12723
[10]   Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst [J].
Green, Isabel Xiaoye ;
Tang, Wenjie ;
Neurock, Matthew ;
Yates, John T., Jr. .
SCIENCE, 2011, 333 (6043) :736-739