Local formulation for elasto-plastic corotational thin-walled beams based on higher-order curvature terms

被引:14
作者
Alsafadie, R. [1 ]
Battini, J. -M. [2 ]
Somja, H. [1 ]
Hjiaj, M. [1 ]
机构
[1] Univ Europeenne Bretagne, INSA Rennes, Struct Engn Res Grp LGCGM, F-35043 Rennes, France
[2] Royal Inst Technol, KTH, Dept Civil & Architectural Engn, SE-10044 Stockholm, Sweden
关键词
Geometrically nonlinear beam; Three-dimensional corotational formulation; Finite element analysis; Arbitrary cross-section; Bending curvatures; Elasto-plasticity; VECTORIAL ROTATIONAL VARIABLES; FINITE-ELEMENT ANALYSIS; INSTABILITY; SECTION; TORSION;
D O I
10.1016/j.finel.2010.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the derivation of a local elasto-plastic finite element formulation of three dimensional corotational beams with arbitrary cross- section. Based on Bernoulli beam kinematics, an improved displacement field is constructed by inclusion of second-order terms of cross-section local rotations. The formulation captures both the Saint-Venant and warping torsional effects of open cross sections. Numerical tests show that the inclusion of the second-order terms of the local bending curvatures gives more accurate and more efficient element that allows a significant reduction of the computational time. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 34 条
[1]   Corotational mixed finite element formulation for thin-walled beams with generic cross-section [J].
Alsafadie, R. ;
Hjiaj, M. ;
Battini, J. -M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (49-52) :3197-3212
[2]  
ALSAFADIE R, COMMUNICATI IN PRESS, DOI DOI 10.1002/CNM.1311
[3]   FINITE-ELEMENT METHOD - NATURAL APPROACH [J].
ARGYRIS, JH ;
BALMER, H ;
DOLTSINIS, JS ;
DUNNE, PC ;
HAASE, M ;
KLEIBER, M ;
MALEJANNAKIS, GA ;
MLEJNEK, HP ;
MULLER, M ;
SCHARPF, DW .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1979, 17-8 (JAN) :1-106
[4]   PLASTIC ANALYSIS OF TORSION OF A PRISMATIC BEAM [J].
BABA, S ;
KAJITA, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (06) :927-944
[5]  
Batoz JL., 1990, MODELISATION STRUCTU, V2
[6]   Plastic instability of beam structures using co-rotational elements [J].
Battini, JM ;
Pacoste, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (51-52) :5811-5831
[7]   Co-rotational beam elements with warping effects in instability problems [J].
Battini, JM ;
Pacoste, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (17-18) :1755-1789
[8]   APPLICATIONS OF HIGHER-ORDER COROTATIONAL STRETCH THEORIES TO NON-LINEAR FINITE-ELEMENT ANALYSIS [J].
BELYTSCHKO, T ;
GLAUM, LW .
COMPUTERS & STRUCTURES, 1979, 10 (1-2) :175-182
[9]  
Bhatti M. A., 2006, ADV TOPICS FINITE EL
[10]  
BRUNET S, 2002, CONTRIBUTION ETUDE D