Training locked-in patients:: A challenge for the use of brain-computer interfaces

被引:56
|
作者
Neumann, N [1 ]
Kübler, A
机构
[1] Univ Tubingen, Inst Med Psychol & Behav Neurobiol, D-72074 Tubingen, Germany
[2] Univ Dublin Trinity Coll, Dept Psychol, Dublin 2, Ireland
关键词
fiofeedback; brain-computer interfaces (BCIs); locked-in patients; man-machine communication;
D O I
10.1109/TNSRE.2003.814431
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Training severely paralyzed patients to use a brain-computer interface (BCI) for communication poses a number of issues and problems. Over the past six years, we have trained 11 patients to self-regulate their slow cortical brain potentials and to use this skill to move a cursor on a computer screen. This paper describes our experiences with this patient group including the problems of accepting and rejecting patients, communicating and interacting with patients, how training may be affected by social, familial, and institutional circumstances, and the importance of motivation and available reinforcers.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [31] A man in a completely locked-in state produces intelligible sentences using a brain-computer interface
    Han, Jason J.
    ARTIFICIAL ORGANS, 2022, 46 (06) : 985 - 986
  • [32] Complete Locked-in and Locked-in Patients: Command Following Assessment and Communication with Vibro-Tactile P300 and Motor Imagery Brain-Computer Interface Tools
    Guger, Christoph
    Spataro, Rossella
    Allison, Brendan Z.
    Heilinger, Alexander
    Ortner, Rupert
    Cho, Woosang
    La Bella, Vincenzo
    FRONTIERS IN NEUROSCIENCE, 2017, 11 : 1 - 11
  • [33] Independent steady state visually evoked potential (SSVEP)-based brain-computer interface for communication with locked-in patients
    Lesenfants, D.
    Habbal, D.
    Chatelle, C.
    Amico, E.
    Gomez, F.
    Lugo, Z.
    Laureys, S.
    Noirhomme, Q.
    JOURNAL OF NEUROLOGY, 2013, 260 : S93 - S93
  • [34] EEG-based Brain-Computer Interface for Real-Time Communication of Patients in Completely Locked-in State
    Han, Chang-Hee
    Im, Chang-Hwan
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 101 - 102
  • [35] Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation
    Yang, Siyu
    Li, Ruobing
    Li, Hongtao
    Xu, Ke
    Shi, Yuqing
    Wang, Qingyong
    Yang, Tiansong
    Sun, Xiaowei
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [36] Towards Explanatory Feedback for User Training in Brain-Computer Interfaces
    Schumacher, Julia
    Jeunet, Camille
    Lotte, Fabien
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 3169 - 3174
  • [37] COMPARING VISUAL, AUDITORY AND TACTILE P300 BRAIN-COMPUTER INTERFACES IN A SINGLE-CASE-STUDY WITH A LOCKED-IN SYNDROME PATIENT
    Ziebell, Philipp
    Eidel, Matthias
    Kuebler, Andrea
    Halder, Sebastian
    PSYCHOPHYSIOLOGY, 2020, 57 : S27 - S27
  • [38] Brain-computer interfaces: a review
    Coyle, S
    Ward, T
    Markham, C
    INTERDISCIPLINARY SCIENCE REVIEWS, 2003, 28 (02) : 112 - 118
  • [39] Brain-Computer Interfaces in Medicine
    Shih, Jerry J.
    Krusienski, Dean J.
    Wolpaw, Jonathan R.
    MAYO CLINIC PROCEEDINGS, 2012, 87 (03) : 268 - 279
  • [40] Flexible brain-computer interfaces
    Tang, Xin
    Shen, Hao
    Zhao, Siyuan
    Li, Na
    Liu, Jia
    NATURE ELECTRONICS, 2023, 6 (02) : 109 - 118