Boundary Topological Entanglement Entropy in Two and Three Dimensions

被引:2
|
作者
Bridgeman, Jacob C. [1 ]
Brown, Benjamin J. [2 ]
Elman, Samuel J. [2 ,3 ,4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[2] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
MODULAR CATEGORIES; FUSION RULES; DEGENERACY; INVARIANTS; STATES;
D O I
10.1007/s00220-021-04191-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topological entanglement entropy is used to measure long-range quantum correlations in the ground space of topological phases. Here we obtain closed form expressions for the topological entropy of (2+1)- and (3+1)-dimensional loop gas models, both in the bulk and at their boundaries, in terms of the data of their input fusion categories and algebra objects. Central to the formulation of our results are generalized S-matrices. We conjecture a general property of these S-matrices, with proofs provided in many special cases. This includes constructive proofs for categories up to rank 5.
引用
收藏
页码:1241 / 1276
页数:36
相关论文
共 50 条
  • [31] Fractionalized topological insulators from frustrated spin models in three dimensions
    Bhattacharjee, Subhro
    Kim, Yong Baek
    Lee, Sung-Sik
    Lee, Dung-Hai
    PHYSICAL REVIEW B, 2012, 85 (22):
  • [32] Superuniversality of topological quantum phase transition and global phase diagram of dirty topological systems in three dimensions
    Goswami, Pallab
    Chakravarty, Sudip
    PHYSICAL REVIEW B, 2017, 95 (07)
  • [33] Topological entanglement and hyperbolic volume
    Dwivedi, Aditya
    Dwivedi, Siddharth
    Mandal, Bhabani Prasad
    Ramadevi, Pichai
    Singh, Vivek Kumar
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (10)
  • [34] Topological aspects of quantum entanglement
    Kauffman, Louis H.
    Mehrotra, Eshan
    QUANTUM INFORMATION PROCESSING, 2019, 18 (03)
  • [35] Squashed entanglement in infinite dimensions
    Shirokov, M. E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
  • [36] Quantum Entanglement in High Dimensions
    Aubrun, Guillaume
    QUANTUM SYMMETRIES, 2017, 2189 : 83 - 114
  • [37] Universal entanglement entropy in two-dimensional conformal quantum critical points
    Hsu, Benjamin
    Mulligan, Michael
    Fradkin, Eduardo
    Kim, Eun-Ah
    PHYSICAL REVIEW B, 2009, 79 (11)
  • [38] Fano resonances and entanglement entropy
    Eisler, Viktor
    Garmon, Savannah Sterling
    PHYSICAL REVIEW B, 2010, 82 (17)
  • [39] Linearity of holographic entanglement entropy
    Almheiri, Ahmed
    Dong, Xi
    Swingle, Brian
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (02):
  • [40] Entanglement entropy on the Cayley tree
    Schreiber, Yishai
    Berkovits, Richard
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,