Boundary Topological Entanglement Entropy in Two and Three Dimensions

被引:2
|
作者
Bridgeman, Jacob C. [1 ]
Brown, Benjamin J. [2 ]
Elman, Samuel J. [2 ,3 ,4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[2] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
MODULAR CATEGORIES; FUSION RULES; DEGENERACY; INVARIANTS; STATES;
D O I
10.1007/s00220-021-04191-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topological entanglement entropy is used to measure long-range quantum correlations in the ground space of topological phases. Here we obtain closed form expressions for the topological entropy of (2+1)- and (3+1)-dimensional loop gas models, both in the bulk and at their boundaries, in terms of the data of their input fusion categories and algebra objects. Central to the formulation of our results are generalized S-matrices. We conjecture a general property of these S-matrices, with proofs provided in many special cases. This includes constructive proofs for categories up to rank 5.
引用
收藏
页码:1241 / 1276
页数:36
相关论文
共 50 条
  • [1] Entanglement entropy, quantum fluctuations, and thermal entropy in topological phases
    Hu, Yuting
    Wan, Yidun
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [2] Topological entanglement entropy of fracton stabilizer codes
    Ma, Han
    Schmitz, A. T.
    Parameswaran, S. A.
    Hermele, Michael
    Nandkishore, Rahul M.
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [3] Bekenstein-Hawking entropy as topological entanglement entropy
    McGough, Lauren
    Verlinde, Herman
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [4] Deciphering the nonlocal entanglement entropy of fracton topological orders
    Shi, Bowen
    Lu, Yuan-Ming
    PHYSICAL REVIEW B, 2018, 97 (14)
  • [5] Experimental observation of classical analogy of topological entanglement entropy
    Chen, Tian
    Zhang, Shihao
    Zhang, Yi
    Liu, Yulong
    Kou, Su-Peng
    Sun, Houjun
    Zhang, Xiangdong
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Fractional Topological Insulators in Three Dimensions
    Maciejko, Joseph
    Qi, Xiao-Liang
    Karch, Andreas
    Zhang, Shou-Cheng
    PHYSICAL REVIEW LETTERS, 2010, 105 (24)
  • [7] Entanglement generation by qubit scattering in three dimensions
    Hida, Yuichiro
    Nakazato, Hiromichi
    Yuasa, Kazuya
    Omar, Yasser
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [8] A note on entanglement entropy and topological defects in symmetric orbifold CFTs
    Gutperle, Michael
    Li, Yan-Yan
    Rathore, Dikshant
    Roumpedakis, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (09):
  • [9] Perturbative analysis of topological entanglement entropy from conditional independence
    Kim, Isaac H.
    PHYSICAL REVIEW B, 2012, 86 (24)
  • [10] Topological Order and Entanglement
    Hamma, Alioscia
    ADVANCES IN QUANTUM COMPUTATION, 2009, 482 : 219 - 224