Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric

被引:189
作者
Sigman, MB [1 ]
Korgel, BA [1 ]
机构
[1] Univ Texas, Texas Mat Inst, Dept Chem Engn, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA
关键词
D O I
10.1021/cm0478733
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Orthorhombic Bi2S3 (bismuthinite) nanorods and nanowires are synthesized by the solventless thermolysis of bismuth alkylthiolate precursors. Reactions carried out in air at similar to 225 degrees C in the presence of a capping ligand species, octanoate, produce high aspect ratio (> 100) nanowires. Lower aspect ratio nanowires (similar to 7) are produced by the same approach with the addition of elemental sulfur at lower reaction temperature (similar to 160 degrees C). Both the nanowires and nanorods are oriented with their long axes in the [002] crystallographic direction. Higher reaction temperatures (similar to 250 degrees C) produce crossed nanowire networks, or fabrics, with highly oriented growth as a result of heterogeneous nanowire nucleation and epitaxial elongation off the surface of existing wires.
引用
收藏
页码:1655 / 1660
页数:6
相关论文
共 50 条
[41]   Space charge limited current mechanism in Bi2S3 nanowires [J].
Kunakova, Gunta ;
Viter, Roman ;
Abay, Simon ;
Biswas, Subhajit ;
Holmes, Justin D. ;
Bauch, Thilo ;
Lombardi, Floriana ;
Erts, Donats .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (11)
[42]   Application of Electrochemical Impedance for Characterising Arrays of Bi2S3 Nanowires [J].
Kunakova, Gunta ;
Katkevics, Juris ;
Viksna, Arturs ;
Gertnere, Zanda ;
Varghese, Justin ;
Holmes, Justin D. ;
Erts, Donats .
ELECTROCHIMICA ACTA, 2015, 170 :33-38
[43]   Synthesis of Bi2S3/MoS2 Nanorods and Their Enhanced Electrochemical Performance for Aluminum Ion Batteries [J].
Zhao, Shimeng ;
Li, Jialin ;
Chen, Haixia ;
Zhang, Jianxin .
JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (03)
[44]   Microwave-assisted hydrothermal synthesis of Bi2S3 nanorods in flower-shaped bundles [J].
Thongtem, Titipun ;
Pilapong, Chalermchai ;
Kavinchan, Jutarat ;
Phuruangrat, Anukorn ;
Thongtem, Somchai .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 500 (02) :195-199
[45]   Hydrothermal synthesis of flower-like Bi2S3 with nanorods in the diameter region of 30 nm [J].
Zhang, H ;
Yang, DR ;
Li, SZ ;
Ji, YJ ;
Ma, XY ;
Que, DL .
NANOTECHNOLOGY, 2004, 15 (09) :1122-1125
[46]   Facile synthesis of Bi2S3 nanoflowers arrays [J].
Tang, Chunjuan ;
Su, Jianfeng ;
Zhang, Yongsheng ;
Cheng, Chunxiao ;
Li, Guanghai .
JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2013, 8 (04) :509-515
[47]   The synthesis of superhydrophobic Bi2S3 complex nanostructures [J].
Xiao, Yujiang ;
Cao, Huaqiang ;
Liu, Kaiyu ;
Zhang, Sichun ;
Chernow, Victoria .
NANOTECHNOLOGY, 2010, 21 (14)
[48]   Synthesis and growth mechanism of Bi2S3 nanoribbons [J].
Liu, ZP ;
Liang, JB ;
Li, S ;
Peng, S ;
Qian, Y .
CHEMISTRY-A EUROPEAN JOURNAL, 2004, 10 (03) :634-640
[49]   Synthesis and thermoelectric properties of Bi2S3 nanobeads [J].
Fang, JY ;
Chen, F ;
Stokes, KL ;
He, JB ;
Tang, JK ;
O'Connor, CJ .
MATERIALS FOR ENERGY STORAGE, GENERATION AND TRANSPORT, 2002, 730 :119-124
[50]   Synthesis and nonlinear optical switching of Bi2S3 nanorods and enhancement in the NLO response of Bi2S3@Au nanorod-composites [J].
Chen, Jeremiah L. T. ;
Nalla, Venkatram ;
Kannaiyan, Ganga ;
Mamidala, Venkatesh ;
Ji, Wei ;
Vittal, Jagadese J. .
NEW JOURNAL OF CHEMISTRY, 2014, 38 (03) :985-992