Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric

被引:189
作者
Sigman, MB [1 ]
Korgel, BA [1 ]
机构
[1] Univ Texas, Texas Mat Inst, Dept Chem Engn, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA
关键词
D O I
10.1021/cm0478733
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Orthorhombic Bi2S3 (bismuthinite) nanorods and nanowires are synthesized by the solventless thermolysis of bismuth alkylthiolate precursors. Reactions carried out in air at similar to 225 degrees C in the presence of a capping ligand species, octanoate, produce high aspect ratio (> 100) nanowires. Lower aspect ratio nanowires (similar to 7) are produced by the same approach with the addition of elemental sulfur at lower reaction temperature (similar to 160 degrees C). Both the nanowires and nanorods are oriented with their long axes in the [002] crystallographic direction. Higher reaction temperatures (similar to 250 degrees C) produce crossed nanowire networks, or fabrics, with highly oriented growth as a result of heterogeneous nanowire nucleation and epitaxial elongation off the surface of existing wires.
引用
收藏
页码:1655 / 1660
页数:6
相关论文
共 50 条
[31]   Facile synthesis of silica-coated Bi2S3 nanorods and hollow silica nanotubes [J].
Wang, SF ;
Gu, F ;
Yang, ZS ;
Lü, MK ;
Zhou, GJ ;
Zou, WG .
JOURNAL OF CRYSTAL GROWTH, 2005, 282 (1-2) :79-84
[32]   SILAR coated Bi2S3 nanoparticles on vertically aligned ZnO nanorods: Synthesis and characterizations [J].
Nikam, Pratibha R. ;
Baviskar, Prashant K. ;
Sali, Jaydeep V. ;
Gurav, Kishor V. ;
Kim, Jin H. ;
Sankapal, Babasaheb R. .
CERAMICS INTERNATIONAL, 2015, 41 (09) :10394-10399
[33]   Synthesis, characterization, computational studies, and photocatalytic properties of Cu doped Bi2S3 nanorods [J].
Nkwe, Violet M. ;
Olatunde, Olalekan C. ;
Ben Smida, Youssef ;
Siddeeg, Saifeldin M. ;
Onwudiwe, Damian C. .
MATERIALS TODAY COMMUNICATIONS, 2023, 34
[34]   EXPERIMENTAL S ISOTOPE FRACTIONATION STUDIES BETWEEN COEXISTING BISMUTHINITE (BI2S3) AND SULFUR (S0) [J].
BENTE, K ;
NIELSEN, H .
EARTH AND PLANETARY SCIENCE LETTERS, 1982, 59 (01) :18-20
[35]   A Self-assembly Approach to Fabricate Bi2S3 Nanorods [J].
Huang, Yangfeng ;
Cai, Yebin ;
Liu, Hao .
MANUFACTURING ENGINEERING AND AUTOMATION I, PTS 1-3, 2011, 139-141 :51-54
[36]   Bismuth Sulfide (Bi2S3) Nanorods as Efficient Photodetection Materials [J].
Yu, Huan ;
Wang, Junli .
PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND COMPUTER SCIENCE, 2016, 80 :935-938
[37]   A rational route to synthesize Bi2S3 nanorods in large scale [J].
Chai, Duoli ;
Yuan, XinSong ;
Yang, BaoJun ;
Qian, Yitai .
SOLID STATE COMMUNICATIONS, 2008, 148 (9-10) :444-447
[38]   Sonochemical Synthesis of Bi2S3 Nanowires Using Single Source Precursor and Their Electrochemical Activity [J].
Devendran, P. ;
Alagesan, T. ;
Manikandan, A. ;
Bahadur, S. Asath ;
Kumar, M. Krishna ;
Rathinavel, S. ;
Pandian, K. .
NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2016, 8 (06) :478-483
[39]   STRUCTURE OF CU4BI4S9 AND ITS RELATION TO STRUCTURES OF COVELLITE, CUS AND BISMUTHINITE, BI2S3 [J].
TAKEUCHI, Y ;
OZAWA, T .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1975, 141 (3-4) :217-232
[40]   Long Bi2S3 nanowires prepared by a simple hydrothermal method [J].
Zhang, H ;
Ji, YJ ;
Ma, XY ;
Xu, J ;
Yang, DR .
NANOTECHNOLOGY, 2003, 14 (09) :974-977