A guide to constraining effective field theories with machine learning

被引:97
作者
Brehmer, Johann [1 ]
Cranmer, Kyle [1 ]
Louppe, Gilles [2 ]
Pavez, Juan [3 ]
机构
[1] NYU, 550 1St Ave, New York, NY 10003 USA
[2] Univ Liege, B-4000 Liege, Belgium
[3] Univ Tecn Federico Santa Maria, Valparaiso 2390123, Chile
基金
美国国家科学基金会;
关键词
HIGH-ENERGY-PHYSICS; PHENOMENOLOGICAL LAGRANGIANS; TOP-QUARK; HYPOTHESES; DECAYS; MODELS; SCALE; MASS;
D O I
10.1103/PhysRevD.98.052004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop, discuss, and compare several inference techniques to constrain theory parameters in collider experiments. By harnessing the latent-space structure of particle physics processes, we extract extra information from the simulator. This augmented data can be used to train neural networks that precisely estimate the likelihood ratio. The new methods scale well to many observables and high-dimensional parameter spaces, do not require any approximations of the parton shower and detector response, and can be evaluated in microseconds. Using weak-boson-fusion Higgs production as an example process, we compare the performance of several techniques. The best results are found for likelihood ratio estimators trained with extra information about the score, the gradient of the log likelihood function with respect to the theory parameters. The score also provides sufficient statistics that contain all the information needed for inference in the neighborhood of the Standard Model. These methods enable us to put significantly stronger bounds on effective dimension-six operators than the traditional approach based on histograms. They also outperform generic machine learning methods that do not make use of the particle physics structure, demonstrating their potential to substantially improve the new physics reach of the Large Hadron Collider legacy results.
引用
收藏
页数:44
相关论文
共 88 条
[1]  
Aad G., 2015, ATLPHYSPUB2015047 AT
[2]   A precision measurement of the mass of the top quark [J].
Abazov, VM ;
Abbott, B ;
Abdesselam, A ;
Abolins, M ;
Abramov, V ;
Acharya, BS ;
Adams, DL ;
Adams, M ;
Ahmed, SN ;
Alexeev, GD ;
Alton, A ;
Alves, GA ;
Arnoud, Y ;
Avila, C ;
Babintsev, VV ;
Babukhadia, L ;
Bacon, TC ;
Baden, A ;
Baffioni, S ;
Baldin, B ;
Balm, PW ;
Banerjee, S ;
Barberis, E ;
Baringer, P ;
Barreto, J ;
Bartlett, JF ;
Bassler, U ;
Bauer, D ;
Bean, A ;
Beaudette, F ;
Begel, M ;
Belyaev, A ;
Beri, SB ;
Bernardi, G ;
Bertram, I ;
Besson, A ;
Beuselinck, R ;
Bezzubov, VA ;
Bhat, PC ;
Bhatnagar, V ;
Bhattacharjee, M ;
Blazey, G ;
Blekman, F ;
Blessing, S ;
Boehnlein, A ;
Bojko, NI ;
Bolton, TA ;
Borcherding, F ;
Bos, K ;
Bose, T .
NATURE, 2004, 429 (6992) :638-642
[3]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[4]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[5]   B′s with direct decays: Tevatron and LHC discovery prospects in the b(b)over-bar+∋T channel [J].
Alwall, Johan ;
Feng, Jonathan L. ;
Kumar, Jason ;
Su, Shufang .
PHYSICAL REVIEW D, 2011, 84 (07)
[6]   Extracting precise Higgs couplings by using the matrix element method [J].
Andersen, Jeppe R. ;
Englert, Christoph ;
Spannowsky, Michael .
PHYSICAL REVIEW D, 2013, 87 (01)
[7]  
[Anonymous], ARXIV150505770
[8]  
[Anonymous], ARXIV160304467
[9]  
[Anonymous], 2008, POS CHARGED
[10]  
[Anonymous], ARXIV160903499