Data-driven point-of-care risk model in patients with acute myocardial infarction and cardiogenic shock

被引:7
作者
Helgestad, Ole K. L. [1 ,2 ,3 ,4 ]
Povlsen, Amalie L. [5 ]
Josiassen, Jakob [6 ]
Moller, Soren [2 ,3 ]
Hassager, Christian [6 ]
Jensen, Lisette O. [1 ]
Holmvang, Lene [6 ]
Schmidt, Henrik [7 ]
Moller, Jacob E. [6 ,8 ]
Ravn, Hanne B. [5 ,7 ]
机构
[1] Odense Univ Hosp, Dept Cardiol, Sdr Blvd 29,Entrance 20,4th Floor, DK-5000 Odense, Denmark
[2] Odense Univ Hosp, OPEN Open Patient Data Explorat Network, JB Winslows Vej 9,4th Floor, DK-5000 Odense C, Denmark
[3] Univ Southern Denmark, Dept Clin Res, Odense, Denmark
[4] Aarhus Univ Hosp, Dept Clin Pharmacol, Victor Albeck Bygningen,Vennelyst Blvd 4, DK-8000 Aarhus C, Denmark
[5] Copenhagen Univ Hosp, Rigshosp, Dept Cardiothorac Anaesthesia, Blegdamsvej 9,Staircase 3,5th Floor, DK-2100 Copenhagen East, Denmark
[6] Copenhagen Univ Hosp, Rigshosp, Dept Cardiol, Inge Lehmanns Vej 7,Staircase 2,15th Floor, DK-2100 Copenhagen East, Denmark
[7] Odense Univ Hosp, Dept Cardiothorac Anaesthesia, B Winslowsvej 4, DK-5000 Odense C, Denmark
[8] Univ Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
关键词
Acute myocardial infarction and cardiogenic shock; Acute percutaneous coronary intervention; Prognosis; Machine learning; Mechanical circulatory support; UNIVERSAL DEFINITION; PREDICTION MODEL; DIAGNOSIS; MORTALITY; SUPPORT;
D O I
10.1093/ehjacc/zuab045
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Prognosis models based on stepwise regression methods show modest performance in patients with cardiogenic shock (CS). Automated variable selection allows data-driven risk evaluation by recognizing distinct patterns in data. We sought to evaluate an automated variable selection method (least absolute shrinkage and selection operator, LASSO) for predicting 30-day mortality in patients with acute myocardial infarction and CS (AMICS) receiving acute percutaneous coronary intervention (PCI) compared to two established scores. Methods and results Consecutive patients with AMICS receiving acute PCI at one of two tertiary heart centres in Denmark 2010-2017. Patients were divided according to treatment with mechanical circulatory support (MCS); PCI-MCS cohort (n=220) versus PCI cohort (n=1180). The latter was divided into a development (2010-2014) and a temporal validation cohort (2015-2017). Cohort-specific LASSO models were based on data obtained before PCI. LASSO models outperformed IABP-SHOCK II and CardShock risk scores in discriminative ability for 30-day mortality in the PCI validation [receiver operating characteristics area under the curve (ROC AUC) 0.80 (95% CI 0.76-0.84) vs 0.73 (95% CI 0.69-0.77) and 0.70 (95% CI 0.65-0.75), respectively, P<0.01 for both] and PCI-MCS development cohort [ROC AUC 0.77 (95% CI 0.70-0.83) vs 0.64 (95% CI 0.57-0.71) and 0.64 (95% CI 0.57-0.71), respectively, P<0.01 for both]. Variable influence differed depending on MCS, with age being the most influential factor in the LASSO-PCI model, whereas haematocrit and estimated glomerular filtration rate were the highest-ranking factors in the LASSO-PCI-MCS model. Conclusion Data-driven prognosis models outperformed established risk scores in patients with AMICS receiving acute PCI and exhibited good discriminative abilities. Observations indicate a potential use of machinelearning to facilitate individualized patient care and targeted interventions in the future. [GRAPHICS]
引用
收藏
页码:668 / 675
页数:8
相关论文
共 29 条
[1]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[2]   Sample size considerations for the external validation of a multivariable prognostic model: a resampling study [J].
Collins, Gary S. ;
Ogundimu, Emmanuel O. ;
Altman, Douglas G. .
STATISTICS IN MEDICINE, 2016, 35 (02) :214-226
[3]   Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges [J].
Goldstein, Benjamin A. ;
Navar, Ann Marie ;
Carter, Rickey E. .
EUROPEAN HEART JOURNAL, 2017, 38 (23) :1805-1814
[4]   Clinical picture and risk prediction of short-term mortality in cardiogenic shock [J].
Harjola, Veli-Pekka ;
Lassus, Johan ;
Sionis, Alessandro ;
Kober, Lars ;
Tarvasmaki, Tuukka ;
Spinar, Jindrich ;
Parissis, John ;
Banaszewski, Marek ;
Silva-Cardoso, Jose ;
Carubelli, Valentina ;
Di Somma, Salvatore ;
Tolppanen, Heli ;
Zeymer, Uwe ;
Thiele, Holger ;
Nieminen, Markku S. ;
Mebazaa, Alexandre .
EUROPEAN JOURNAL OF HEART FAILURE, 2015, 17 (05) :501-509
[5]   Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons [J].
Hastie, Trevor ;
Tibshirani, Robert ;
Tibshirani, Ryan .
STATISTICAL SCIENCE, 2020, 35 (04) :579-592
[6]   Temporal trends in incidence and patient characteristics in cardiogenic shock following acute myocardial infarction from 2010 to 2017: a Danish cohort study [J].
Helgestad, Ole K. L. ;
Josiassen, Jakob ;
Hassager, Christian ;
Jensen, Lisette O. ;
Holmvang, Lene ;
Sorensen, Anne ;
Frydland, Martin ;
Lassen, Annmarie T. ;
Udesen, Nanna L. J. ;
Schmidt, Henrik ;
Ravn, Hanne B. ;
Moller, Jacob E. .
EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 (11) :1370-1378
[7]   Contemporary trends in use of mechanical circulatory support in patients with acute MI and cardiogenic shock [J].
Helgestad, Ole Kristian Lerche ;
Josiassen, Jakob ;
Hassager, Christian ;
Jensen, Lisette Okkels ;
Holmvang, Lene ;
Udesen, Nanna Louise Junker ;
Schmidt, Henrik ;
Ravn, Hanne Berg ;
Moller, Jacob Eifer .
OPEN HEART, 2020, 7 (01)
[8]   Identifying Important Risk Factors for Survival in Patient With Systolic Heart Failure Using Random Survival Forests [J].
Hsich, Eileen ;
Gorodeski, Eiran Z. ;
Blackstone, Eugene H. ;
Ishwaran, Hemant ;
Lauer, Michael S. .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2011, 4 (01) :39-45
[9]   Admission diagnosis and mortality risk prediction in a contemporary cardiac intensive care unit population [J].
Jentzer, Jacob C. ;
van Diepen, Sean ;
Murphree, Dennis H. ;
Ismail, Abdalla S. ;
Keegan, Mark T. ;
Morrow, David A. ;
Barsness, Gregory W. ;
Anavekar, Nandan S. .
AMERICAN HEART JOURNAL, 2020, 224 :57-64
[10]  
Katus HA