Examining the interplay between face mask usage, asymptomatic transmission, and social distancing on the spread of COVID-19

被引:43
作者
Catching, Adam [1 ,2 ]
Capponi, Sara [3 ,4 ]
Te Yeh, Ming [1 ]
Bianco, Simone [3 ,4 ]
Andino, Raul [1 ]
机构
[1] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Grad Program Biophys, San Francisco, CA 94158 USA
[3] IBM Almaden Res Ctr, AI & Cognit Software, Funct Genom & Cellular Engn, San Jose, CA 95120 USA
[4] Ctr Cellular Construct, San Francisco, CA 94158 USA
关键词
D O I
10.1038/s41598-021-94960-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
COVID-19's high virus transmission rates have caused a pandemic that is exacerbated by the high rates of asymptomatic and presymptomatic infections. These factors suggest that face masks and social distance could be paramount in containing the pandemic. We examined the efficacy of each measure and the combination of both measures using an agent-based model within a closed space that approximated real-life interactions. By explicitly considering different fractions of asymptomatic individuals, as well as a realistic hypothesis of face masks protection during inhaling and exhaling, our simulations demonstrate that a synergistic use of face masks and social distancing is the most effective intervention to curb the infection spread. To control the pandemic, our models suggest that high adherence to social distance is necessary to curb the spread of the disease, and that wearing face masks provides optimal protection even if only a small portion of the population comply with social distance. Finally, the face mask effectiveness in curbing the viral spread is not reduced if a large fraction of population is asymptomatic. Our findings have important implications for policies that dictate the reopening of social gatherings.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility [J].
Arons, M. M. ;
Hatfield, K. M. ;
Reddy, S. C. ;
Kimball, A. ;
James, A. ;
Jacobs, J. R. ;
Taylor, J. ;
Spicer, K. ;
Bardossy, A. C. ;
Oakley, L. P. ;
Tanwar, S. ;
Dyal, J. W. ;
Harney, J. ;
Chisty, Z. ;
Bell, J. M. ;
Methner, M. ;
Paul, P. ;
Carlson, C. M. ;
McLaughlin, H. P. ;
Thornburg, N. ;
Tong, S. ;
Tamin, A. ;
Tao, Y. ;
Uehara, A. ;
Harcourt, J. ;
Clark, S. ;
Brostrom-Smith, C. ;
Page, L. C. ;
Kay, M. ;
Lewis, J. ;
Montgomery, P. ;
Stone, N. D. ;
Clark, T. A. ;
Honein, M. A. ;
Duchin, J. S. ;
Jernigan, J. A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (22) :2081-2090
[2]   Presumed Asymptomatic Carrier Transmission of COVID-19 [J].
Bai, Yan ;
Yao, Lingsheng ;
Wei, Tao ;
Tian, Fei ;
Jin, Dong-Yan ;
Chen, Lijuan ;
Wang, Meiyun .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (14) :1406-1407
[3]   Agent-based modeling of host-pathogen systems: The successes and challenges [J].
Bauer, Amy L. ;
Beauchemin, Catherine A. A. ;
Perelson, Alan S. .
INFORMATION SCIENCES, 2009, 179 (10) :1379-1389
[4]   Turbulent Gas Clouds and Respiratory Pathogen Emissions Potential Implications for Reducing Transmission of COVID-19 [J].
Bourouiba, Lydia .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (18) :1837-1838
[5]   The Effect of Mask Use on the Spread of Influenza During a Pandemic [J].
Brienen, Nicole C. J. ;
Timen, Aura ;
Wallinga, Jacco ;
van Steenbergen, Jim E. ;
Teunis, Peter F. M. .
RISK ANALYSIS, 2010, 30 (08) :1210-1218
[6]  
Buitrago-Garcia D. C, ASYMPTOMATIC SARS CO, DOI [10.1101/2020.04.25.20079103(2020, DOI 10.1101/2020.04.25.20079103(2020]
[7]   Modelling transmission and control of the COVID-19 pandemic in Australia [J].
Chang, Sheryl L. ;
Harding, Nathan ;
Zachreson, Cameron ;
Cliff, Oliver M. ;
Prokopenko, Mikhail .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]  
Cline S., NEWS BREAK
[9]   Covid-19: four fifths of cases are asymptomatic, China figures indicate [J].
Day, Michael .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369 :m1375
[10]   Commentary on Ferguson, et al., "Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand" [J].
Eubank, S. ;
Eckstrand, I ;
Lewis, B. ;
Venkatramanan, S. ;
Marathe, M. ;
Barrett, C. L. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2020, 82 (04)