Study on Oxidation Kinetics and Mechanism of Copper Slag Under Non-isothermal Conditions

被引:3
|
作者
Zhang, Lili [1 ,2 ]
Yang, Hongwei [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Natl Engn Res Ctr Vacuum Met, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Copper slag; Non-isothermal kinetics; Oxidation; Thermogravimetry analysis; RECOVERY; REDUCTION;
D O I
10.1007/s42461-022-00614-z
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The oxidation behavior of copper smelting slag under non-isothermal conditions was studied by thermal analysis. The results indicate that the copper slag is mainly composed of fayalite (Fe2SiO4) and magnetite (Fe3O4). The oxidation behavior can be divided into two reaction stages with the increase in temperature; the first stage is the oxidation of fayalite to magnetite, and the second stage is the oxidation of magnetite to hematite. The two reaction stages cannot be strictly separated; that is, the reaction of fayalite is not complete, and magnetite has begun to transform into hematite. Based on the TG (thermogravimetric) curves, the ABS (Achar-Brindley-Sharp-Wendworth) differential and the Coats-Redfern integral methods were employed to investigate the oxidation kinetics of copper slag during the continuous heating process. The oxidation of fayalite into magnetite and amorphous silica phases occurs mainly in the temperature range of 673 to 1083 K. The activation energies calculated by the two methods are 193.69 and 195.52 kJ mol(-1), respectively. The reaction is consistent with Avrami-Erofeev equation, and the mechanism of oxidation is random nucleation and growth. The oxidation of magnetite to hematite occurs at 1083-1303 K. The activation energies are 308.79 and 328.77 kJ mol(-1), respectively. The mechanism conforms to the Jander equation and is controlled by the two-dimensional diffusion.
引用
收藏
页码:1587 / 1596
页数:10
相关论文
共 50 条
  • [21] Kinetics of copper slag oxidation under nonisothermal conditions
    Gyurov, Stoyko
    Rabadjieva, Diana
    Kovacheva, Daniela
    Kostova, Yoanna
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 116 (02) : 945 - 953
  • [22] Hydrogen desorption kinetics mechanism of Mg-Ni hydride under isothermal and non-isothermal conditions
    Chen, Chao-yi
    Chen, Hui-lin
    Ma, Ya-qin
    Liu, Jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2016, 26 (01) : 160 - 166
  • [23] Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions
    Cides, LCS
    Araújo, AAS
    Santos-Filho, M
    Matos, JR
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2006, 84 (02) : 441 - 445
  • [24] Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions
    L. C. S. Cides
    A. A. S. Araújo
    M. Santos-Filho
    J. R. Matos
    Journal of Thermal Analysis and Calorimetry, 2006, 84 : 441 - 445
  • [25] KINETICS OF HARDENING OF POLYMERS CRYSTALLIZING UNDER NON-ISOTHERMAL CONDITIONS
    ALEKSEEV, PG
    SHEVELEV, VV
    GRAFOVA, RI
    DANILOVADANILYAN, TV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 1988, 31 (07): : 115 - 117
  • [26] Michaelis-Menten kinetics under non-isothermal conditions
    Lervik, Anders
    Kjelstrup, Signe
    Qian, Hong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (02) : 1317 - 1324
  • [27] An investigation of the kinetics of cellulose degradation under non-isothermal conditions
    Bigger, SW
    Scheirs, J
    Camino, G
    POLYMER DEGRADATION AND STABILITY, 1998, 62 (01) : 33 - 40
  • [28] Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
    Nisar, Jan
    Khan, Muhammad A.
    Ali, Ghulam
    Iqbal, Munawar
    Din, Muhammad Imran
    Hussain, Zaib
    Bhatti, Ijaz A.
    Al-Kadhi, Nada S.
    Alamro, Fowzia S.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2022, 236 (09): : 1163 - 1172
  • [29] Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions
    Fandaruff, C.
    Araya-Sibaja, A. M.
    Pereira, R. N.
    Hoffmeister, C. R. D.
    Rocha, H. V. A.
    Silva, M. A. S.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 115 (03) : 2351 - 2356
  • [30] Transformation kinetics of zirconium alloys under non-isothermal conditions
    Massih, A. R.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 384 (03) : 330 - 335