Maxima of the Q-index: Graphs with no Ks,t

被引:13
作者
de Freitas, Maria Aguieiras A. [1 ]
Nikiforov, Vladimir [2 ]
Patuzzi, Laura [1 ]
机构
[1] Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
Signless Laplacian; Spectral radius; Forbidden complete bipartite graphs; Extremal problem;
D O I
10.1016/j.laa.2016.01.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note presents a new spectral version of the graph Zarankiewicz problem: How large can be the maximum eigenvalue of the signless Laplacian of a graph of order n that does not contain a specified complete bipartite subgraph. A conjecture is stated about general complete bipartite graphs, which is proved for infinitely many cases. More precisely, it is shown that if G is a graph of order n, with no subgraph isomorphic to K-2,K-s+1, then the largest eigenvalue q(G) of the signless Laplacian of G satisfies q(G) <= n+2s/2 + 1/2 root(n-2s)(2) + 8s, with equality holding if and only if G is a join of K-1 and an s-regular graph of order n-1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:381 / 391
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1999, DESIGN THEORY
[2]  
[Anonymous], RES REPORT
[3]  
[Anonymous], 1998, GRAD TEXT M
[4]  
Babai L, 2009, ELECTRON J COMB, V16
[5]  
de Freitas M.A. A., 2013, ELECTRON J LINEAR AL, V26, P905
[6]   Infinite families of Q-integral graphs [J].
de Freitas, Maria Aguieiras A. ;
de Abreu, Nair M. M. ;
Del-Vecchio, Renata R. ;
Jurkiewicz, Samuel .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2352-2360
[7]  
Fredi Z, 1996, COMB PROBAB COMPUT, V5, P29
[8]  
Füredi Z, 2013, BOLYAI SOC MATH STUD, V25, P169
[9]   New asymptotics for bipartite Turan numbers [J].
Furedi, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 75 (01) :141-144
[10]  
Hylten-Cavallius C., 1958, Colloq. Math, V6, P59