Supervised learning methods (eg. PLS-DA, SVM, etc.) have been widely used with laser-induced breakdown spectroscopy (LIBS) to classify materials; however, it may induce a low correct classification rate if a test sample type is not included in the training dataset. Unsupervised cluster analysis methods (hierarchical clustering analysis, K-means clustering analysis, and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper. The results of hierarchical clustering analysis using four different similarity measuring methods (single linkage, complete linkage, unweighted pair-group average, and weighted pair-group average) are compared. In K-means clustering analysis, four kinds of choosing initial centers methods are applied in our case and their results are compared. The classification results of hierarchical clustering analysis, K-means clustering analysis, and ISODATA are analyzed. The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS.
引用
收藏
页码:647 / 653
页数:7
相关论文
共 31 条
[1]
[Anonymous], MATH CLASSIFICATION
[2]
Boueri M, 2011, APPL SPECTROSC, V65, P307, DOI 10.1366/10-06079
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
Feng, Jie
Wang, Zhe
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
Wang, Zhe
Li, Lizhi
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
Li, Lizhi
Li, Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
Li, Zheng
Ni, Weidou
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
Feng, Jie
Wang, Zhe
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
Wang, Zhe
Li, Lizhi
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
Li, Lizhi
Li, Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China
Li, Zheng
Ni, Weidou
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, State Key Lab Power Syst, Beijing 100084, Peoples R China