Automatic synthesis of multi-agent motion tasks based on LTL specifications

被引:84
作者
Loizou, SG [1 ]
Kyriakopoulos, KJ [1 ]
机构
[1] Natl Tech Univ Athens, Dept Mech Engn, Control Syst Lab, GR-10682 Athens, Greece
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1428622
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a methodology for automatically synthesizing motion task controllers based on Linear Temporal Logic (LTL) specifications. The proposed desion of the underlying multi-agent controllers possess a special structure that allows for implicit satisfaction of basic liveness and safety specifications. The resulting closed loop system is of hybrid nature combining the continuous dynamics of the underlying system with the automatically synthesized switching logic that enforces the LTL specification. The effectiveness or the proposed scheme is verified through non-trivial computer simulations.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 13 条
  • [1] KLAVINS E, 2002, P INT C ROB AUT
  • [2] ROBOT NAVIGATION FUNCTIONS ON MANIFOLDS WITH BOUNDARY
    KODITSCHEK, DE
    RIMON, E
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1990, 11 (04) : 412 - 442
  • [3] LOIZOU S, 2004, IEEE T ROBOTICS
  • [4] Loizou SG, 2002, 2002 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-3, PROCEEDINGS, P2861, DOI 10.1109/IRDS.2002.1041704
  • [5] LOIZOU SG, 2002, CLOSED LOOP NAVIGATI
  • [6] MANIKONDA JHV, 1998, MATH CONTROL THEORY, P199
  • [7] MILNOR J, 1963, MORSE THEORY SER ANN
  • [8] Richard Buchi J., 1966, Proceedings of the 1960 International Congress on Logic, Methodology, and Philosophy of Science, V44, P1
  • [9] EXACT ROBOT NAVIGATION USING ARTIFICIAL POTENTIAL FUNCTIONS
    RIMON, E
    KODITSCHEK, DE
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1992, 8 (05): : 501 - 518
  • [10] THE CONSTRUCTION OF ANALYTIC DIFFEOMORPHISMS FOR EXACT ROBOT NAVIGATION ON STAR WORLDS
    RIMON, E
    KODITSCHEK, DE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (01) : 71 - 116