Increased thromboxane/prostaglandin receptors contribute to high glucose-induced podocyte injury and mitochondrial fission through ROCK1-Drp1 signaling

被引:7
|
作者
Liu, Sirui [1 ,2 ]
Li, Xuehong [1 ,2 ]
Chen, Lei [1 ,2 ]
Yang, Qinglan [1 ,2 ]
Song, Shicong [1 ,2 ]
Xiao, Guanqing [4 ]
Su, Zhongzhen [3 ]
Wang, Cheng [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 5, Dept Med, Div Nephrol, Zhuhai 519000, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 5, Guangdong Prov Key Lab Biomed Imaging, Zhuhai 519000, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 5, Dept Ultrasound, Zhuhai 519000, Guangdong, Peoples R China
[4] First Peoples Hosp Foshan, Dept Nephrol, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Thromboxane; Prostaglandin receptor; Diabetic nephropathy; Podocyte; Mitochondria; PROSTANOID RECEPTORS; ANTAGONIST S18886; THROMBOXANE; DYSFUNCTION; ACTIVATION; DYNAMICS; PROSTAGLANDIN; PROTEINURIA; INHIBITION; MECHANISMS;
D O I
10.1016/j.biocel.2022.106281
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Excessive mitochondrial fission in podocytes serves as a central hub for the pathogenesis of diabetic nephropathy (DN), and the thromboxane/prostaglandin receptor (TP receptor) plays a potential role in DN. However, regu-lation of the TP receptor during mitochondrial dynamics disorder in podocytes remains unknown. Here, we firstly reported novel mechanistic details of TP receptor effects on mitochondrial dynamics in podocytes under diabetic conditions. Expression of the TP receptor was significantly upregulated in podocytes under diabetic conditions both in vivo and in vitro. S18886 attenuated podocyte mitochondrial fission, glomerular injury and renal dysfunction in diabetic mice. Furthermore, inhibition of the TP receptor by both genetic and pharmaco-logical methods dramatically reduced mitochondrial fission and attenuated podocyte injury induced by high glucose through regulating dynamin-related protein 1 (Drp1) phosphorylation and its subsequent translocation to mitochondria. In contrast, TP receptor overexpression and application of TP receptor agonist U46619 in these podocytes showed the opposite effect on mitochondrial fission and podocyte injury. Furthermore, treatment with Y27632, an inhibitor of Rho-associated kinase1 (ROCK1), significantly blunted more fragmented mitochondria and reduced podocyte injuries in podocytes with TP receptor overexpression or after U46619 treatment. Finally, pharmacological inhibition of Drp1 alleviated excessive mitochondrial fragmentation and podocyte damage in TP receptor overexpressing podocytes. Our data suggests that increased expression of the TP receptor can occur in a human cultured podocyte cell line and in podocytes derived from streptozotocin (STZ)-induced diabetic mice, which contributes to mitochondrial excessive fission and podocyte injury via ROCK1-Drp1 signaling.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway
    Liu, Yang
    Xu, Zhonggao
    Ma, Fuzhe
    Jia, Ye
    Wang, Guannan
    BIOMEDICINE & PHARMACOTHERAPY, 2018, 107 : 1393 - 1401
  • [12] Atrasentan alleviates high glucose-induced podocyte injury by the microRNA-21/forkhead box O1 axis
    Wang, Jie
    Shen, Lanyu
    Hong, Hong
    Li, Jie
    Wang, Hongtai
    Li, Xiuzhen
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2019, 852 : 142 - 150
  • [13] Tangshenning Attenuates High Glucose-Induced Podocyte Injury via Restoring Autophagy Activity through Inhibiting mTORC1 Activation
    Xu, Jiayi
    Shan, Xiaomeng
    Chen, Chunwei
    Gao, Yanbin
    Zou, Dawei
    Wang, Xiaolei
    Wang, Tao
    Shi, Yimin
    JOURNAL OF DIABETES RESEARCH, 2022, 2022
  • [14] Knockdown of UHRF1 ameliorates high glucose-induced podocyte injury by activating SIRT4
    Huang, Fei
    Wei, Jing
    MOLECULAR & CELLULAR TOXICOLOGY, 2024, 20 (03) : 591 - 600
  • [15] Ginsenoside Rb1 prevents high glucose-induced Schwann cell injury through the mitochondrial apoptosis pathway
    Li Xiaogang
    Zhang Zhe
    Wang Rui
    Xia Xinxin
    Liu Yonghui
    Sun Lianqing
    JOURNAL OF TRADITIONAL CHINESE MEDICINE, 2017, 37 (06) : 746 - 755
  • [16] Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest
    Kim, Dong Il
    Park, Soo Hyun
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 435 (04) : 702 - 707
  • [17] Drp1 mediates high glucose-induced mitochondrial dysfunction and epithelial-mesenchymal transition in endometrial cancer cells
    Guo, Jing
    Ye, Feng
    Jiang, Xiaoping
    Guo, Hui
    Xie, Wenli
    Zhang, Ying
    Sheng, Xiugui
    EXPERIMENTAL CELL RESEARCH, 2020, 389 (01)
  • [18] Metformin inhibits high glucose-induced apoptosis of renal podocyte through regulating miR-34a/SIRT1 axis
    Zhuang, Xudong
    Sun, Zhuye
    Du, Huasheng
    Zhou, Tianhui
    Zou, Jing
    Fu, Wei
    IMMUNITY INFLAMMATION AND DISEASE, 2024, 12 (01)
  • [19] Matrine attenuates high glucose-induced podocyte damage by inhibiting HMGB1-associated TLR4-NF-κB signaling
    Zhang, Yanyan
    Liu, Wei
    Li, Dake
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2019, 12 (07): : 8512 - 8521
  • [20] Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway
    Huang, Guodong
    Zou, Bingyu
    Lv, Jianzhen
    Li, Tongyu
    Huai, Guoli
    Xiang, Shaowei
    Lu, Shilong
    Luo, Huan
    Zhang, Yaping
    Jin, Yi
    Wang, Yi
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2017, 39 (03) : 559 - 568