NA-Isometric Operators on Hilbert Spaces

被引:0
作者
Aouichaoui, Mohamed Amine [1 ]
Skhiri, Haikel [2 ]
机构
[1] Inst Preparatoire Etud Ingn Monastir, Dept Math, Rue Ibn Eljazzar, Monastir 5019, Tunisia
[2] Fac Sci Monastir, Dept Math, Ave Environm, Monastir 5019, Tunisia
关键词
Partial isometry; Powers; Spectrum; Contraction; GENERALIZED INVERSES; FACTORIZATION; DECOMPOSITION; SEMIGROUPS; POWERS;
D O I
10.1007/s10440-022-00531-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A great deal of excellent work has been done for partial isometrics. Thanks to early work of I. Erdelyi & P. R. Halmos, among others; they have played a fundamental role in structural study of Hilbert space operators, especially, in the theory of the polar decomposition of arbitrary operators and in the dimension theory of von Neumann algebras. They have also arisen in quantum physics (Bock et al. in Lett. Math. Phys. 112(2):1-11, 2022; Bracci and Picasso in Bull. Lond. Math. Soc. 39(5):792-802, 2007; Lai et al. in Quantum Inf. Process. 21(3):1-17, 2022). Based on the study of partial isometrics (Erdelyi in J. Math. Anal. Appl. 22:546-551, 1968; Ezzahraoui et al. in Arch. Math. 110(3):251-259, 2018; Halmos and McLaughlin in Pac. J. Math. 13:585-596, 1963; Halmos and Wallen in J. Math. Mech. 19:657-663, 1970; Mostafa and Skhiri in Integral Equ. Oper. Theory 38:334-349, 2000; Wallen in Bull. Am. Math. Soc. 75:763-764, 1969) and semi-generalized partial isometries (Garbouj and Skhiri in Results Math. 75(1):15, 2020), for a given linear bounded non-zero operator A, we introduce a new class of operators called N-A-isometries. We present its basic properties, and show a variety of results which improve and extend some works related to classical partial isometrics.
引用
收藏
页数:22
相关论文
共 45 条
  • [1] [Anonymous], 1987, CBMS REGIONAL C SERI
  • [2] Apostol C, 1967, Revue Roumaine de Mathematiques Pures et Appliquees, V12, P759
  • [3] Partial isometries in semi-Hilbertian spaces
    Arias, M. Laura
    Corach, Gustavo
    Gonzalez, M. Celeste
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1460 - 1475
  • [4] The Moore-Penrose inverse: a hundred years on a frontline of physics research
    Baksalary, Oskar Maria
    Trenkler, Goetz
    [J]. EUROPEAN PHYSICAL JOURNAL H, 2021, 46 (01)
  • [5] Ball J.A, 2012, CURRENT TRENDS OPERA
  • [6] NOTE ON HYPONORMAL OPERATORS
    BERBERIAN, SK
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (04) : 1171 - &
  • [7] ON 2 PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE
    BEURLING, A
    [J]. ACTA MATHEMATICA, 1949, 81 (02) : 239 - 255
  • [8] A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra
    Bock, Wolfgang
    Futorny, Vyacheslav
    Neklyudov, Mikhail
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
  • [9] Representations of semigroups of partial isometries
    Bracci, L.
    Picasso, L. E.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 792 - 802
  • [10] Brezis H., 2011, Functional analysis. Universitex, DOI DOI 10.1007/978-0-387-70914-7