On a degenerate heat equation with a singular potential

被引:66
作者
Goldstein, JA [1 ]
Zhang, QS [1 ]
机构
[1] Univ Memphis, Dept Math, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.2001.3792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a new method, we generalize the blow up and existence result from P. Baras and J. A. Goldstein (1984, Trans. Amer. Math. Soc. 284, 121-139) to heat equations on the Heisenberg group, In doing so we need to overcome the difficulty that the equation in this case is both degenerate and of variable coefficients. Comparing with the Euclidean case. an interesting new result is that solutions can blow up even when the singularity of the potential is weaker than the inverse square of the distance function. (C) 2001 Academic Press.
引用
收藏
页码:342 / 359
页数:18
相关论文
共 15 条
[1]  
[Anonymous], 1968, ANN SCUOLA NORM-SCI
[2]  
[Anonymous], SPECTRAL THEORY DIFF
[3]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[4]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[5]  
BARAS P, 1986, N HOLLAND MATH STUD, V92, P31
[6]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978
[7]   FREQUENCY FUNCTIONS ON THE HEISENBERG-GROUP, THE UNCERTAINTY PRINCIPLE AND UNIQUE CONTINUATION [J].
GAROFALO, N ;
LANCONELLI, E .
ANNALES DE L INSTITUT FOURIER, 1990, 40 (02) :313-356
[9]  
Kato T., 1976, PERTURBATION THEORY
[10]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201