Structural evolution of defective graphene under heat treatment and gamma irradiation

被引:15
作者
Zhang, Yifei [1 ]
Shi, Jie [1 ]
Chen, Cheng [1 ]
Li, Nan [1 ]
Xu, Zhiwei [1 ]
Liu, Liangsen [1 ]
Zhao, Lihuan [1 ]
Li, Jing [1 ]
Jing, Miaolei [1 ]
机构
[1] Tianjin Polytech Univ, Sch Text, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Gamma irradiation; Heat treatment; Crystal size; Defect; RAMAN-SPECTROSCOPY; CARBON-FIBERS; GRAPHITE OXIDE; REDUCTION; ROUTE; FILMS; NANOSHEETS; RADIATION; SPECTRA; SHEETS;
D O I
10.1016/j.physe.2017.11.007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have studied the structural change of defective graphene built by annealing in different temperature under the condition of gamma irradiation. Firstly, we found the heat treatment not only reduced but also striped the graphene. This behavior made defects become more firstly and then become less with the increase of temperature. And then gamma irradiation removed some oxygen-containing groups, by a simultaneous changed over carbon in the graphitic lattice from sp(3) to sp(2). Also, the gamma irradiation decreased the interlayer spacing between graphene lowest to 3.391 angstrom and made a crosslink which resulting in the size of the ordered gaining. A variation was detected by Raman spectroscopy that the amorphous carbon was declined after gamma irradiation. Furtherly we found the degree of this decline raised first and then diminished with the increase in the number of defects. The change in repair capacity of gamma irradiation presented a strategy for repairing the defects of graphene.
引用
收藏
页码:151 / 154
页数:4
相关论文
共 39 条
[1]   The effect of gamma-irradiation on few-layered graphene materials [J].
Anson-Casaos, A. ;
Puertolas, J. A. ;
Pascual, F. J. ;
Hernandez-Ferrer, J. ;
Castell, P. ;
Benito, A. M. ;
Maser, W. K. ;
Martinez, M. T. .
APPLIED SURFACE SCIENCE, 2014, 301 :264-272
[2]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[3]   Annealing a graphene oxide film to produce a free standing high conductive graphene film [J].
Chen, Cheng-Meng ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Gong, Wen-Zhao ;
Yang, Quan-Hong ;
Wang, Mao-Zhang ;
Yang, Yong-Gang .
CARBON, 2012, 50 (02) :659-667
[4]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[5]   Restoration of graphene from graphene oxide by defect repair [J].
Cheng, Meng ;
Yang, Rong ;
Zhang, Lianchang ;
Shi, Zhiwen ;
Yang, Wei ;
Wang, Duoming ;
Xie, Guibai ;
Shi, Dongxia ;
Zhang, Guangyu .
CARBON, 2012, 50 (07) :2581-2587
[6]   High-Quality Single-Layer Graphene via Reparative Reduction of Graphene Oxide [J].
Dai, Boya ;
Fu, Lei ;
Liao, Lei ;
Liu, Nan ;
Yan, Kai ;
Chen, Yongsheng ;
Liu, Zhongfan .
NANO RESEARCH, 2011, 4 (05) :434-439
[7]   All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide [J].
Dua, Vineet ;
Surwade, Sumedh P. ;
Ammu, Srikanth ;
Agnihotra, Srikanth Rao ;
Jain, Sujit ;
Roberts, Kyle E. ;
Park, Sungjin ;
Ruoff, Rodney S. ;
Manohar, Sanjeev K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (12) :2154-2157
[8]   Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation [J].
Fan, Xiaobin ;
Peng, Wenchao ;
Li, Yang ;
Li, Xianyu ;
Wang, Shulan ;
Zhang, Guoliang ;
Zhang, Fengbao .
ADVANCED MATERIALS, 2008, 20 (23) :4490-4493
[9]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[10]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246