Smooth quasiregular mappings with branching

被引:16
作者
Bonk, X [1 ]
Heinonen, J [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
来源
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 100 | 2004年 / 100卷 / 1期
关键词
Hausdorff Dimension; Boundary Component; Quasiconformal Mapping; Local Index; Solid Torus;
D O I
10.1007/s10240-004-0024-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an example of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}^{3-\epsilon}$\end{document}-smooth quasiregular mapping in 3-space with nonempty branch set. Moreover, we show that the branch set of an arbitrary quasiregular mapping in n-space has Hausdorff dimension quantitatively bounded away from n. By using the second result, we establish a new, qualitatively sharp relation between smoothness and branching.
引用
收藏
页码:153 / 170
页数:18
相关论文
empty
未找到相关数据