Inverse methods for uncertain problems

被引:0
|
作者
Chakraverty, S. [1 ]
Rao, T. D. [2 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela 769008, Odisha, India
[2] Amrita Vishwa Vidyaprrtham, Sch Engn, Chennai Campus, Chennai 601103, Tamil Nadu, India
关键词
Fuzzy parameters; Diffusion; Inverse; Approximation; Radon; Experimental; RADON TRANSPORT; SOIL; EQUATION;
D O I
10.1080/09720502.2021.1970947
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes new methods to handle inverse problems. In particular, uncertain parameters have been taken here as fuzzy viz. Triangular Fuzzy Numbers (TFNs) involved in various physical models. Inverse approaches are very useful to approximate the unknown parameters that characterize the system when data from experimental measurements are already known. In this work we proposed different inverse approaches to approximate the unknown TFNs of various models of radon diffusion/dispersion problems with the help of obtained experimental data.
引用
收藏
页码:1253 / 1266
页数:14
相关论文
共 50 条
  • [32] Two general methods for inverse optimization problems
    Yang, C
    Zhang, J
    APPLIED MATHEMATICS LETTERS, 1999, 12 (02) : 69 - 72
  • [33] Parametric Level Set Methods for Inverse Problems
    Aghasi, Alireza
    Kilmer, Misha
    Miller, Eric L.
    SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (02): : 618 - 650
  • [34] HYBRID PROJECTION METHODS WITH RECYCLING FOR INVERSE PROBLEMS
    Jiang, Jiahua
    Chung, Julianne
    De Sturler, Eric
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S146 - S172
  • [35] Regularized ensemble Kalman methods for inverse problems
    Zhang, Xin-Lei
    Michelen-Strofer, Carlos
    Xiao, Heng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 416
  • [36] The Preface of the Session on Statistical Methods in Inverse Problems
    Helin, Tapio
    Pikkarainen, Hanna K.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1801 - 1802
  • [37] Comparison of optimal design methods in inverse problems
    Banks, H. T.
    Holm, K.
    Kappel, F.
    INVERSE PROBLEMS, 2011, 27 (07)
  • [38] ON RATIONAL APPROXIMATION METHODS FOR INVERSE SOURCE PROBLEMS
    Hanke, Martin
    Rundell, William
    INVERSE PROBLEMS AND IMAGING, 2011, 5 (01) : 185 - 202
  • [39] Use of inverse methods in atmospheric sounding problems
    Du, Hua-Dong
    Huang, Si-Xun
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1494 - 1498
  • [40] Methods for Solving of Inverse Heat Conduction Problems
    Kobilskaya, E.
    Lyashenko, V.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'16), 2016, 1773