Comparison of Radiomics Models Built Through Machine Learning in a Multicentric Context With Independent Testing: Identical Data, Similar Algorithms, Different Methodologies

被引:18
作者
Upadhaya, Taman [1 ]
Vallieres, Martin [2 ]
Chatterjee, Avishek [3 ]
Lucia, Francois [2 ,4 ]
Bonaffini, Pietro Andrea [5 ]
Masson, Ingrid [6 ]
Mervoyer, Augustin [6 ]
Reinhold, Caroline [5 ]
Schick, Ulrike [2 ,4 ]
Seuntjens, Jan [3 ]
Le Rest, Catherine Cheze [1 ,2 ]
Visvikis, Dimitris [2 ]
Hatt, Mathieu [2 ]
机构
[1] Univ Poitiers Hosp, Dept Nucl Med, F-86021 Poitiers, France
[2] Univ Western Brittany, LaTIM, INSERM UMR 1101, F-29238 Brest, France
[3] McGill Univ, Med Phys Unit, Montreal, PQ H3A 0G4, Canada
[4] CHRU Morvan Brest, Radiat Oncol Dept, F-29609 Brest, France
[5] McGill Univ, Hlth Ctr, Dept Radiol, Montreal, PQ H4A 3J1, Canada
[6] Inst Cancerol Ouest, Dept Radiat Oncol, F-44800 Nantes, France
关键词
Cancer; cervix; local failure prediction; machine learning; magnetic resonance imaging (MRI); positron emission tomography (PET); radiomics; random forest; PREDICTION;
D O I
10.1109/TRPMS.2018.2878934
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Machine learning techniques are becoming increasingly popular in radiomics studies. They can handle high dimensional sets of radiomics features with higher robustness than usual statistical analyses, by capturing complex interactions between features themselves and between feature combinations and clinical endpoints under investigation in order to build efficient prognostic/predictive models. However, there is no "one fits all" solution and deciding which algorithm is the most accurate for a given application is not always straightforward. In this paper, to keep a realistic perspective on various emerging clinical applications based on radiomics, we performed an evaluation of the popular random forest classifier for predicting local failure in cervix cancer exploiting identical data, but relying on different methodologies to select and combine features of interest. The main objective was to demonstrate various challenges of model building and tuning for radiomics applications. The results obtained in the present work could provide general guidelines to assist in the practical development of radiomics-based models.
引用
收藏
页码:192 / 200
页数:9
相关论文
共 25 条
[1]  
Abu-Mostafa Y.S., 2012, Learning_from_data, V4
[2]   Assessing the accuracy of prediction algorithms for classification: an overview [J].
Baldi, P ;
Brunak, S ;
Chauvin, Y ;
Andersen, CAF ;
Nielsen, H .
BIOINFORMATICS, 2000, 16 (05) :412-424
[3]  
BISHOP C. M., 2006, Pattern recognition and machine learning, DOI [DOI 10.1117/1.2819119, 10.1007/978-0-387-45528-0]
[4]  
Bossuyt PM, 2015, BMJ-BRIT MED J, V351, DOI [10.1148/radiol.2015151516, 10.1136/bmj.h5527, 10.1373/clinchem.2015.246280]
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Chatterjee A., 2018, IEEE T RAD PLASMA ME
[7]   Ten quick tips for machine learning in computational biology [J].
Chicco, Davide .
BIODATA MINING, 2017, 10
[8]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1136/bmj.g7594, 10.1016/j.eururo.2014.11.025, 10.7326/M14-0697, 10.1186/s12916-014-0241-z, 10.1002/bjs.9736, 10.7326/M14-0698]
[9]   Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers [J].
Deist, Timo M. ;
Dankers, Frank J. W. M. ;
Valdes, Gilmer ;
Wijsman, Robin ;
Hsu, I-Chow ;
Oberije, Cary ;
Lustberg, Tim ;
van Soest, Johan ;
Hoebers, Frank ;
Jochems, Arthur ;
El Naqa, Issam ;
Wee, Leonard ;
Morin, Olivier ;
Raleigh, David R. ;
Bots, Wouter ;
Kaanders, Johannes H. ;
Belderbos, Jose ;
Kwint, Margriet ;
Solberg, Timothy ;
Monshouwer, Rene ;
Bussink, Johan ;
Dekker, Andre ;
Lambin, Philippe .
MEDICAL PHYSICS, 2018, 45 (07) :3449-3459
[10]  
Guyon I., 2020, J MACH LEARN RES, V3, P1157, DOI [DOI 10.1162/153244303322753616, 10.1162/153244303322753616]