Algorithmic procedure to compute abelian subalgebras and ideals of maximal dimension of Leibniz algebras

被引:3
作者
Ceballos, Manuel [1 ]
Nunez, Juan [1 ]
Tenorio, Angel F. [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Geometria & Topol, E-41080 Seville, Spain
[2] Univ Pablo de Olavide, Escuela Politecn Super, Dept Econ Metodos Cuantitat & Hist Econ, Seville 41013, Sevilla, Spain
关键词
beta invariant; Leibniz algebra; abelian ideal; algorithm; abelian subalgebra; alpha invariant; 68Q25; 17A60; 17-08; 17A32; 68W30; CLASSIFICATION;
D O I
10.1080/00207160.2014.884216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show an algorithmic procedure to compute abelian subalgebras and ideals of a given finite-dimensional Leibniz algebra, starting from the non-zero brackets in its law. In order to implement this method, the symbolic computation package MAPLE 12 is used. Moreover, we also show a brief computational study considering both the computing time and the memory used in the two main routines of the implementation. Finally, we determine the maximal dimension of abelian subalgebras and ideals for 3-dimensional Leibniz algebras and 4-dimensional solvable ones over .
引用
收藏
页码:1838 / 1854
页数:17
相关论文
共 15 条
  • [1] Albeverio S., 2006, EXTRACTA MATH, V21, P197
  • [2] ON LEVI'S THEOREM FOR LEIBNIZ ALGEBRAS
    Barnes, Donald W.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) : 184 - 185
  • [3] The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices
    Benjumea, J. C.
    Nunez, J.
    Tenorio, A. F.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (03) : 1225 - 1233
  • [4] The classification of 4-dimensional Leibniz algebras
    Canete, Elisa M.
    Khudoyberdiyev, Abror Kh.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (01) : 273 - 288
  • [5] Classification of solvable Leibniz algebras with null-filiform nilradical
    Casas, J. M.
    Ladra, M.
    Omirov, B. A.
    Karimjanov, I. A.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06) : 758 - 774
  • [6] An algorithm for the classification of 3-dimensional complex Leibniz algebras
    Casas, J. M.
    Insua, M. A.
    Ladra, M.
    Ladra, S.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3747 - 3756
  • [7] Ceballos M., 2012, THESIS U SEVILLE
  • [8] On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras
    Ceballos, Manuel
    Towers, David A.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) : 497 - 503
  • [9] Algorithmic method to obtain abelian subalgebras and ideals in Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (10) : 1388 - 1411
  • [10] Gomez J.R., ARXIVMATH0612735V2MA