Joint Occurrence of Heavy PM2.5 Pollution Episodes and Persistent Foggy Days in Central East China

被引:2
作者
Yu, Caixia [1 ,2 ,3 ,4 ]
Yang, Yuanjian [5 ]
Liu, Dong [2 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Anhui Inst Opt & Fine Mech, Key Lab Atmospher Opt, Hefei, Peoples R China
[2] Grad Sch USTC, Sci Isl Branch, Hefei, Peoples R China
[3] Anhui Inst Meteorol Sci, Anhui Prov Key Lab Atmospher Sci & Satellite Remo, Hefei, Peoples R China
[4] China Meteorol Adm Huaihe River Basin, Shouxian Natl Climate Observ, Typ Farmland Ecometeorol Field Sci Test Base, Shouxian, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing, Peoples R China
关键词
PM25; pollution episodes; fog process; wet deposition; subsidence motions; rebound; YANGTZE-RIVER DELTA; PARTICULATE AIR-POLLUTION; METEOROLOGICAL CONDITIONS; POTENTIAL IMPACTS; HAZE; PATTERNS; QUALITY; WINTERTIME; EMISSION; MATTER;
D O I
10.3389/fenvs.2021.821648
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Although many severe pollution events in Central and East China have been analyzed in recent years, the heavy PM2.5 pollution episode happened on persistent foggy days from January 13 to 18, 2018 was unique, characterized by explosive increase and sharp decrease in PM2.5 (particles with kinetic equivalent diameter less than or equal to 2.5 microns) concentration. Based on hourly data of ground level meteorological parameters, PM2.5 data and CALIPSO-based (the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) aerosol data, combined with ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis data and radiosonde temperature profile, a comprehensive analysis was conducted to reveal the meteorological reasons for the evolution of the episode at horizontal and vertical scales. The PM2.5 concentration experienced four stages: a slow-increase phase, rapid-increase phase, rapid-decrease phase, and rebound phase. Results show that because Central and East China (CEC) were located at the back of a high-pressure system, humid southerly winds and near surface inversion (NSI) were responsible for the slow accumulation of pollutants. The rapid-increase phase was attributed to pollution transport at both ground level and in the lower troposphere because of weak cold air invasion. The significant subsidence at 500 hPa and 700 hPa intensified the NSI and led to dense fog. In that case, corresponding to the supersaturated atmosphere, the particles entered the fog droplets and were scavenged partly by deposition at night and were resuspended on the next day when the atmosphere was unsaturated. Our findings provide convincing evidence that surface PM2.5 rapid-decrease phase and the rebound phase were closely associated with dense fog process.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A Modeling Study of a Typical Winter PM2.5 Pollution Episode in a City in Eastern China
    Gao, Lina
    Zhang, Renjian
    Han, Zhiwei
    Fu, Congbin
    Yan, Peng
    Wang, Tijian
    Hong, Shengmao
    Jiao, Li
    AEROSOL AND AIR QUALITY RESEARCH, 2014, 14 (01) : 311 - 322
  • [42] Comparison of health and economic impacts of PM2.5 and ozone pollution in China
    Xie, Yang
    Dai, Hancheng
    Zhang, Yanxu
    Wu, Yazhen
    Hanaoka, Tatsuya
    Masui, Toshihiko
    ENVIRONMENT INTERNATIONAL, 2019, 130
  • [43] Causes of PM2.5 pollution in an air pollution transport channel city of northern China
    Zhao, Xueyan
    Wang, Jing
    Xu, Bo
    Zhao, Ruojie
    Zhao, Guangjie
    Wang, Jian
    Ma, Yinhong
    Liang, Handong
    Li, Xianqing
    Yang, Wen
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (16) : 23994 - 24009
  • [44] PM2.5 pollution in a megacity of southwest China: source apportionment and implication
    Tao, J.
    Gao, J.
    Zhang, L.
    Zhang, R.
    Che, H.
    Zhang, Z.
    Lin, Z.
    Jing, J.
    Cao, J.
    Hsu, S. -C.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (16) : 8679 - 8699
  • [45] Influence of fireworks displays on the chemical characteristics of PM2.5 in rural and suburban areas in Central and East China
    Zhang, Junmei
    Yang, Lingxiao
    Chen, Jianmin
    Mellouki, Abdelwahid
    Jiang, Pan
    Gao, Ying
    Li, Yanyan
    Yang, Yumeng
    Wang, Wenxing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 578 : 476 - 484
  • [46] The underlying mechanisms of PM2.5 and O3 synergistic pollution in East China: Photochemical and heterogeneous interactions
    Qu, Yawei
    Wang, Tijian
    Yuan, Cheng
    Wu, Hao
    Gao, Libo
    Huang, Congwu
    Li, Yasong
    Li, Mengmeng
    Xie, Min
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 873
  • [47] Regulation of Synoptic Circulation in Regional PM2.5 Transport for Heavy Air Pollution: Study of 5-year Observation Over Central China
    Hu, Weiyang
    Zhao, Tianliang
    Bai, Yongqing
    Kong, Shaofei
    Shen, Lijuan
    Xiong, Jie
    Zhou, Yue
    Gu, Yao
    Shi, Junnan
    Zheng, Huang
    Sun, Xiaoyun
    Meng, Kai
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (13)
  • [48] Dominant synoptic patterns associated with the decay process of PM2.5 pollution episodes around Beijing
    Wang, Xiaoyan
    Zhang, Renhe
    Tan, Yanke
    Yu, Wei
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (04) : 2491 - 2508
  • [49] Decomposing PM2.5 air pollution rebounds in Northern China before COVID-19
    Dong, Changgui
    Li, Jiaying
    Qi, Ye
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (19) : 28688 - 28699
  • [50] Spatial concentration, impact factors and prevention-control measures of PM2.5 pollution in China
    Wu, Xianhua
    Chen, Yufeng
    Guo, Ji
    Wang, Guizhi
    Gong, Yeming
    NATURAL HAZARDS, 2017, 86 (01) : 393 - 410