Joint Occurrence of Heavy PM2.5 Pollution Episodes and Persistent Foggy Days in Central East China

被引:2
作者
Yu, Caixia [1 ,2 ,3 ,4 ]
Yang, Yuanjian [5 ]
Liu, Dong [2 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Anhui Inst Opt & Fine Mech, Key Lab Atmospher Opt, Hefei, Peoples R China
[2] Grad Sch USTC, Sci Isl Branch, Hefei, Peoples R China
[3] Anhui Inst Meteorol Sci, Anhui Prov Key Lab Atmospher Sci & Satellite Remo, Hefei, Peoples R China
[4] China Meteorol Adm Huaihe River Basin, Shouxian Natl Climate Observ, Typ Farmland Ecometeorol Field Sci Test Base, Shouxian, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing, Peoples R China
关键词
PM25; pollution episodes; fog process; wet deposition; subsidence motions; rebound; YANGTZE-RIVER DELTA; PARTICULATE AIR-POLLUTION; METEOROLOGICAL CONDITIONS; POTENTIAL IMPACTS; HAZE; PATTERNS; QUALITY; WINTERTIME; EMISSION; MATTER;
D O I
10.3389/fenvs.2021.821648
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Although many severe pollution events in Central and East China have been analyzed in recent years, the heavy PM2.5 pollution episode happened on persistent foggy days from January 13 to 18, 2018 was unique, characterized by explosive increase and sharp decrease in PM2.5 (particles with kinetic equivalent diameter less than or equal to 2.5 microns) concentration. Based on hourly data of ground level meteorological parameters, PM2.5 data and CALIPSO-based (the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) aerosol data, combined with ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis data and radiosonde temperature profile, a comprehensive analysis was conducted to reveal the meteorological reasons for the evolution of the episode at horizontal and vertical scales. The PM2.5 concentration experienced four stages: a slow-increase phase, rapid-increase phase, rapid-decrease phase, and rebound phase. Results show that because Central and East China (CEC) were located at the back of a high-pressure system, humid southerly winds and near surface inversion (NSI) were responsible for the slow accumulation of pollutants. The rapid-increase phase was attributed to pollution transport at both ground level and in the lower troposphere because of weak cold air invasion. The significant subsidence at 500 hPa and 700 hPa intensified the NSI and led to dense fog. In that case, corresponding to the supersaturated atmosphere, the particles entered the fog droplets and were scavenged partly by deposition at night and were resuspended on the next day when the atmosphere was unsaturated. Our findings provide convincing evidence that surface PM2.5 rapid-decrease phase and the rebound phase were closely associated with dense fog process.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Predicting gridded winter PM2.5 concentration in the east of China
    Yin, Zhicong
    Duan, Mingkeng
    Li, Yuyan
    Xu, Tianbao
    Wang, Huijun
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (17) : 11173 - 11185
  • [32] Comparison of PM2.5 Chemical Compositions during Haze and Non-haze Days in a Heavy Industrial City in North China
    Li, Menghui
    Wu, Liping
    Zhang, Xiangyan
    Wang, Xinwu
    Bai, Wenyu
    Ming, Jing
    Geng, Chunmei
    Yang, Wen
    AEROSOL AND AIR QUALITY RESEARCH, 2020, 20 (09) : 1950 - 1960
  • [33] The relationship between PM2.5 pollution and aerosol radiative forcing in a heavy industrial city, Taiyuan, in China
    Ren, Xinbing
    Wu, Junsong
    Gong, Chongshui
    Gao, Wenkang
    Zhao, Dandan
    Ma, Yongjing
    Xin, Jinyuan
    ATMOSPHERIC RESEARCH, 2022, 267
  • [34] Comprehensive characterization of PM2.5 using chemical, optical, and spectroscopic methods during pollution episodes at an urban site in Gwangju, Korea
    Son, Se-Chang
    Yu, Geun-Hye
    Park, Seungshik
    Lee, Sangil
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (10)
  • [35] Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou,China
    Fuwang Zhang
    Lingling Xu
    Jinsheng Chen
    Xiaoqiu Chen
    Zhenchuan Niu
    Tong Lei
    Chunming Li
    Jinping Zhao
    Particuology, 2013, 11 (03) : 264 - 272
  • [36] Source Apportionment of PM2.5 during Haze and Non-Haze Episodes in Wuxi, China
    Chen, Pulong
    Wang, Tijian
    Kasoar, Matthew
    Xie, Min
    Li, Shu
    Zhuang, Bingliang
    Li, Mengmeng
    ATMOSPHERE, 2018, 9 (07):
  • [37] Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China
    Zhang, Fuwang
    Xu, Lingling
    Chen, Jinsheng
    Chen, Xiaoqiu
    Niu, Zhenchuan
    Lei, Tong
    Li, Chunming
    Zhao, Jinping
    PARTICUOLOGY, 2013, 11 (03) : 264 - 272
  • [38] Characterizations of PM2.5 Pollution Pathways and Sources Analysis in Four Large Cities in China
    Lv, Baolei
    Liu, Yu
    Yu, Peng
    Zhang, Bin
    Bai, Yuqi
    AEROSOL AND AIR QUALITY RESEARCH, 2015, 15 (05) : 1836 - 1843
  • [39] Driving Factors of PM2.5 Pollution Rebound in North China Plain in Early 2023
    Song, Qian
    Huang, Lyuyin
    Zhang, Yanning
    Li, Zeqi
    Wang, Shuxiao
    Zhao, Bin
    Yin, Dejia
    Ma, Mingchen
    Li, Shengyue
    Liu, Bing
    Zhu, Lili
    Chang, Xing
    Gao, Da
    Jiang, Yueqi
    Dong, Zhaoxin
    Shi, Hongrong
    Hao, Jiming
    ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2025, 12 (03): : 305 - 312
  • [40] Non-Linear Response of PM2.5 Pollution to Land Use Change in China
    Lu, Debin
    Mao, Wanliu
    Xiao, Wu
    Zhang, Liang
    REMOTE SENSING, 2021, 13 (09)