A Novel Binary QUasi-Affine TRansformation Evolution (QUATRE) Algorithm and Its Application for Feature Selection

被引:1
作者
Liu, Fei-Fei [1 ]
Chu, Shu-Chuan [1 ,2 ]
Wang, Xiaopeng [1 ]
Pan, Jeng-Shyang [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Flinders Univ S Australia, Coll Sci & Engn, Sturt Rd,Bedford Pk, Adelaide, SA 5042, Australia
来源
ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING (ECC 2021) | 2022年 / 268卷
关键词
D O I
10.1007/978-981-16-8048-9_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
QUasi-Affine TRansformation Evolution (QUATRE) algorithm is a new intelligent computing algorithm based on matrix iteration behavior. Binary QUATRE (BQUATRE) is a binary version that can be used to solve binary application problems. From continuous to binary arithmetic is a crucial part of the binary version. In order to convert the continuous type to the binary type, this paper proposes a simple and effective conversion method. After the benchmark function test, it proves that the improved binary QUATRE method has strong competitiveness. Finally, the feature selection problem can be successfully solved in the UCI data set, and a higher classification accuracy can be obtained with a smaller number of features.
引用
收藏
页码:305 / 315
页数:11
相关论文
共 25 条
  • [1] Aksu D., 2018, COMPUTER INFORM SCI, P141, DOI DOI 10.1007/978-3-030-00840-6_16
  • [2] Cai D., 2017, J NETW INTELL, V2, P171
  • [3] Chu SC, 2011, LECT NOTES ARTIF INT, V6922, P28, DOI 10.1007/978-3-642-23935-9_3
  • [4] Imaging characteristics of adult H3 K27M-mutant gliomas (vol 133, pg 1635, 2020)
    Chu, Shuguang
    [J]. JOURNAL OF NEUROSURGERY, 2020, 133 (06) : 1970 - 1970
  • [5] Dua D., 2017, UCIMACHINE LEARNING
  • [6] Pigeon-inspired optimization: a news warm intelligence optimizer for air robot path planning
    Duan, Haibin
    Qiao, Peixin
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2014, 7 (01) : 24 - 37
  • [7] Binary grey wolf optimization approaches for feature selection
    Emary, E.
    Zawba, Hossam M.
    Hassanien, Aboul Ella
    [J]. NEUROCOMPUTING, 2016, 172 : 371 - 381
  • [8] New Hybrid Algorithms for Prediction of Daily Load of Power Network
    Hu, Pei
    Pan, Jeng-Shyang
    Chu, Shu-Chuan
    Chai, Qing-Wei
    Liu, Tao
    Li, Zhong-Cui
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (21):
  • [9] Kou X., 2020, J. Netw. Intell., V5, P191
  • [10] Kuang F.-J., 2017, J NETW INTELL, V2, P195