An h-adaptive thermo-mechanical phase field model for fracture

被引:137
|
作者
Badnava, Hojjat [1 ]
Msekh, Mohammed A. [2 ]
Etemadi, Elahe [3 ]
Rabczuk, Timon [4 ]
机构
[1] Behbahan Khatam Alanbia Univ Technol, Dept Mech Engn, Khuzestan, Iran
[2] Univ Babylon, Coll Engn, Civil Engn Dept, Babylon, Iraq
[3] Semnan Univ, Fac Engn, Semnan, Iran
[4] Bauhaus Univ Weimar, Inst Struct Mech, Fac Civil Engn, Weimar, Germany
关键词
Phase field model; Thermal induced cracks; Brittle fracture; Thermo-mechanical fracture; Mesh refinement; SCREENED POISSON EQUATION; ARBITRARY EVOLVING CRACKS; DUAL-HORIZON PERIDYNAMICS; DYNAMIC BRITTLE-FRACTURE; GRADIENT-ENHANCED MODEL; LOCAL MESH REFINEMENT; SHAPE-MEMORY ALLOYS; NUMERICAL IMPLEMENTATION; ABAQUS IMPLEMENTATION; PRESSURIZED FRACTURES;
D O I
10.1016/j.finel.2017.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, brittle fracture and thermo-mechanical induced cracks are simulated using a phase field model in 2D and 3D continua in homogeneous and heterogeneous materials. The phase field model for fracture has specific regulations regarding the finite element mesh size. Therefore, a mesh refinement algorithm by adopting a predictor-corrector mesh refinement strategy is used in both applications of mechanical and thermo-mechanical fracture models. Several mechanical and thermo-mechanical examples are presented in this work to prove the capability of the proposed numerical implementation. The multi-field problems are solved using a staggered solution algorithm with and without the parallelization of the system equations. The simulation times of the tested specimens are compared for different meshing criteria, adaptive refinement, pre-refinement of the expected crack path, and the global refinement of the specimen.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 50 条
  • [41] C1 continuous h-adaptive least-squares spectral element method for phase-field models
    Park, Keunsoo
    Gerritsma, Marc
    Fernandino, Maria
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (05) : 1582 - 1594
  • [42] Fracture analysis of CNT-reinforced composites under thermo-mechanical loading using XIGA
    Yadav, Aanchal
    Bhardwaj, Gagandeep
    Godara, R. K.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (03)
  • [43] Fracture analysis of CNT-reinforced composites under thermo-mechanical loading using XIGA
    Aanchal Yadav
    Gagandeep Bhardwaj
    R. K. Godara
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [44] Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture
    Shao, Yulong
    Duan, Qinglin
    Qiu, Shasha
    COMPUTATIONAL MECHANICS, 2019, 64 (03) : 741 - 767
  • [45] Phase field model for brittle fracture in multiferroic materials
    Tan, Yu
    Liu, Chang
    Zhao, Jinsheng
    He, Yuxiang
    Li, Peidong
    Li, Xiangyu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 414
  • [46] A phase-field model for fracture in piezoelectric ceramics
    Wilson, Zachary A.
    Borden, Michael J.
    Landis, Chad M.
    INTERNATIONAL JOURNAL OF FRACTURE, 2013, 183 (02) : 135 - 153
  • [47] A phase-field fracture model for piezoelectrics in hydrogen-rich environment
    Tan, Yu
    Peng, Fan
    Li, Peidong
    Liu, Chang
    Zhao, Jianjun
    Li, Xiangyu
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2025, 291-292
  • [48] Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models
    R. P. Dhote
    R. N. V. Melnik
    J. Zu
    Meccanica, 2014, 49 : 1561 - 1575
  • [49] An adaptive phase-field model with variable-node elements for fracture of hyperelastic materials at large deformations
    Xing, Chen
    Yu, Tiantang
    Sun, Yulin
    Wang, Yongxiang
    ENGINEERING FRACTURE MECHANICS, 2023, 281
  • [50] Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models
    Dhote, R. P.
    Melnik, R. N. V.
    Zu, J.
    MECCANICA, 2014, 49 (07) : 1561 - 1575