The optimal transform for the discrete Hirschman uncertainty principle

被引:42
作者
Przebinda, T [1 ]
DeBrunner, V
Özaydin, M
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
[2] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
entropy; information measures; orthogonal functions; signal representation theory;
D O I
10.1109/18.930948
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We determine all signals giving equality for the discrete Hirschman uncertainty principle, We single out the case where the entropies of the time signal and its Fourier transform are equal, These signals (up to scaler multiples) form an orthonormal basis giving an orthogonal transform that optimally packs a finite-duration discrete-time signal, The transform may be computed via a fast algorithm due to its relationship to the discrete Fourier transform.
引用
收藏
页码:2086 / 2090
页数:5
相关论文
共 12 条
  • [1] [Anonymous], 1990, TRIGONOMETRIC SERIES
  • [2] DeBrunner V, 2000, IEEE T SIGNAL PROCES, V48, P3586, DOI 10.1109/78.887057
  • [3] Resolution in time-frequency
    DeBrunner, V
    Özaydin, M
    Przebinda, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (03) : 783 - 788
  • [4] DeBrunner V., 2000, P ICASSP 00 IST TURK
  • [5] INFORMATION THEORETIC INEQUALITIES
    DEMBO, A
    COVER, TM
    THOMAS, JA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1501 - 1518
  • [6] UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY
    DONOHO, DL
    STARK, PB
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) : 906 - 931
  • [7] A NOTE ON ENTROPY
    HIRSCHMAN, II
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) : 152 - 156
  • [8] HORMANDER L, 1994, NOTIONS CONVEXITY
  • [9] Platonic orthonormal wavelets
    Ozaydin, M
    Przebinda, T
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (04) : 351 - 365
  • [10] OZAYDIN M, UNPUB ENTROPY BASED