Linear Inviscid Damping in Gevrey Spaces

被引:38
作者
Jia, Hao [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
STABILITY;
D O I
10.1007/s00205-019-01445-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove linear inviscid damping near a general class of monotone shear flows in a finite channel, in Gevrey spaces. This is an essential step towards proving nonlinear inviscid damping for general shear flows that are not close to the Couette flow, which is a major open problem in 2d Euler equations.
引用
收藏
页码:1327 / 1355
页数:29
相关论文
共 26 条
[1]  
[Anonymous], ARXIV180107371
[2]  
[Anonymous], ARXIV171103668
[3]  
[Anonymous], ARXIV180804026
[4]  
[Anonymous], ARXIV180408291
[5]  
[Anonymous], ARXIV170400428
[6]  
Bedrossian J, 2016, ARXIV160506841
[7]   INVISCID DAMPING AND THE ASYMPTOTIC STABILITY OF PLANAR SHEAR FLOWS IN THE 2D EULER EQUATIONS [J].
Bedrossian, Jacob ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122) :195-300
[8]   Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations [J].
Bouchet, Freddy ;
Morita, Hidetoshi .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (12) :948-966
[9]   STABILITY OF INVISCID PLANE COUETTE FLOW [J].
CASE, KM .
PHYSICS OF FLUIDS, 1960, 3 (02) :143-148
[10]  
Deng Yu, 2018, ARXIV180301246