The use of s-block metal centers to construct coordination networks (CNs) is comparatively rare. The predominance of ionic forces and the absence of well-defined secondary building units make the rational construction of porous s-block CNs a challenging task. However, the nontoxic subset of these metals (Li, Na, K, Mg, Ca) based CNs, potentially useful for gas storage, separation, drug delivery, catalysis, and electrochemical applications, makes exploratory synthesis a worthwhile endeavor. In this review, we discuss the recent advances in the synthesis of s-block-CNs, produced using common carboxylic acid based linkers.