A comparative study of efficient iterative solvers for generalized Stokes equations

被引:34
作者
Larin, Maxim [1 ]
Reusken, Arnold [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
关键词
generalized Stokes problem; preconditioned MINRES; inexact Uzawa method; multigrid methods; Vanka and Braess-Sarazin smoothers;
D O I
10.1002/nla.561
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalized Stokes equation with problem parameters xi >= 0 (size of the reaction term) and nu>0 (size of the diffusion term). We apply a standard finite element method for discretization. The main topic of the paper is a study of efficient iterative solvers for the resulting discrete saddle point problem. We investigate a coupled multigrid method with Braess-Sarazin and Vanka-type smoothers, a preconditioned MINRES method and an inexact Uzawa method. We present a comparative study of these methods. An important issue is the dependence of the rate of convergence of these methods on the mesh size parameter and on the problem parameters and v. We give an overview of the main theoretical convergence results known for these methods. For a three-dimensional problem, discretized by the Hood-Taylor P-2-P-1 pair, we give results of numerical experiments. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:13 / 34
页数:22
相关论文
共 27 条
[1]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[2]   An efficient smoother for the Stokes problem [J].
Braess, D ;
Sarazin, R .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) :3-19
[3]   A subspace cascadic multigrid method for mortar elements [J].
Braess, D ;
Deuflhard, P ;
Lipnikov, K .
COMPUTING, 2002, 69 (03) :205-225
[4]   A cascadic multigrid algorithm for the Stokes equations [J].
Braess, D ;
Dahmen, W .
NUMERISCHE MATHEMATIK, 1999, 82 (02) :179-191
[5]   A multigrid algorithm for the mortar finite element method [J].
Braess, D ;
Dahmen, W ;
Wieners, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :48-69
[6]   Iterative techniques for time dependent Stokes problems [J].
Bramble, JH ;
Pasciak, JE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (1-2) :13-30
[7]  
BRENNER S., 1996, RAIRO-MATH MODEL NUM, V30, P265
[9]  
Hackbusch W, 1994, ITERATIVE SOLUTION L
[10]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI 10.1007/978-3-662-02427-0