Contextual Priming in Grapheme-Color Synesthetes and Yoked Controls: 400 msec in the Life of a Synesthete

被引:31
作者
Brang, David [1 ]
Kanai, Stanley [1 ]
Ramachandran, Vilayanur S. [1 ]
Coulson, Seana [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
SEMANTIC INTEGRATION; SYNAESTHESIA; POTENTIALS; MECHANISMS; HANDEDNESS; DISCOURSE; SELECTION; STRIATE; PICTURE; N400;
D O I
10.1162/jocn.2010.21486
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Grapheme-color synesthesia is a heritable trait where graphemes ("2") elicit the concurrent perception of specific colors (red). Researchers have questioned whether synesthetic experiences are meaningful or simply arbitrary associations and whether these associations are perceptual or conceptual. To address these fundamental questions, ERPs were recorded as 12 synesthetes read statements such as "The Coca-Cola logo is white and 2," in which the final grapheme induced a color that was either contextually congruous (red) or incongruous ("...white and 7," for a synesthetes who experienced 7 as green). Grapheme congruity was found to modulate the amplitude of the N1, P2, N300, and N400 components in synesthetes, suggesting that synesthesia impacts perceptual as well as conceptual aspects of processing. To evaluate whether observed ERP effects required the experience of colored graphemes versus knowledge of grapheme-color pairings, we ran three separate groups of controls on a similar task. Controls trained to a synesthete's associations elicited N400 modulation, indicating that knowledge of grapheme-color mappings was sufficient to modulate this component. Controls trained to synesthetic associations and given explicit visualization instructions elicited both N300 and N400 modulations. Lastly, untrained controls who viewed physically colored graphemes ("2" printed in red) elicited N1 and N400 modulations. The N1 grapheme congruity effect began earlier in synesthetes than colored grapheme controls but had similar scalp topography. Data suggest that, in synesthetes, achromatic graphemes engage similar visual processing networks as colored graphemes in nonsynesthetes and are in keeping with models of synesthesia that posit early feed-forward connections between form and color processing areas in extrastriate cortex. The P2 modulation was unique to the synesthetes and may reflect neural activity that underlies the conscious experience of the synesthetic induction.
引用
收藏
页码:1681 / 1696
页数:16
相关论文
共 62 条
  • [1] [Anonymous], SCHOLARPEDIA
  • [2] Synaesthesia is associated with enhanced, self-rated visual imagery
    Barnett, Kylie J.
    Newell, Fiona N.
    [J]. CONSCIOUSNESS AND COGNITION, 2008, 17 (03) : 1032 - 1039
  • [3] Differences in early sensory-perceptual processing in synesthesia: A visual evoked potential study
    Barnett, Kylie J.
    Foxe, John J.
    Molholm, Sophie
    Kelly, Simon P.
    Shalgi, Shani
    Mitchell, Kevin J.
    Newell, Fiona N.
    [J]. NEUROIMAGE, 2008, 43 (03) : 605 - 613
  • [4] Synaesthesia: Prevalence and familiarity
    BaronCohen, S
    Burt, L
    SmithLaittan, F
    Harrison, J
    Bolton, P
    [J]. PERCEPTION, 1996, 25 (09) : 1073 - 1079
  • [5] Time course of neural activity correlated with colored-hearing synesthesia
    Beeli, Gian
    Esslen, Michaela
    Jaencke, Lutz
    [J]. CEREBRAL CORTEX, 2008, 18 (02) : 379 - 385
  • [6] Neural aspects of cohort-size reduction during visual gating
    Bles, Mart
    Alink, Arjen
    Jansma, Bernadette M.
    [J]. BRAIN RESEARCH, 2007, 1150 : 143 - 154
  • [7] Is the sky 2? Contextual priming in grapheme-color synaesthesia
    Brang, D.
    Edwards, L.
    Ramachandran, V. S.
    Coulson, S.
    [J]. PSYCHOLOGICAL SCIENCE, 2008, 19 (05) : 421 - 428
  • [8] Magnetoencephalography reveals early activation of V4 in grapheme-color synesthesia
    Brang, D.
    Hubbard, E. M.
    Coulson, S.
    Huang, M.
    Ramachandran, V. S.
    [J]. NEUROIMAGE, 2010, 53 (01) : 268 - 274
  • [9] BRANG D, GRAPHEME CO IN PRESS
  • [10] Local circuits in primary visual cortex of the macaque monkey
    Callaway, EM
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 1998, 21 : 47 - 74