Computable Error Estimates for a Nonsymmetric Eigenvalue Problem

被引:8
作者
Xie, Hehu [1 ,2 ]
Xie, Manting [1 ,2 ]
Yin, Xiaobo [3 ,4 ]
Yue, Meiling [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[4] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
关键词
Nonsymmetric eigenvalue problem; computable error estimates; asymptotical exactness; finite element method; complementary method;
D O I
10.4208/eajam.140317.250517a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide some computable error estimates in solving a nonsymmetric eigen-value problem by general conforming finite element methods on general meshes. Based on the complementary method, we first give computable error estimates for both the original eigenfunctions and the corresponding adjoint eigenfunctions, and then we introduce a generalised Rayleigh quotient to deduce a computable error estimate for the eigenvalue approximations. Some numerical examples are presented to illustrate our theoretical results.
引用
收藏
页码:583 / 602
页数:20
相关论文
共 23 条
  • [1] Adams R.A., 1975, Sobolev Spaces
  • [2] Ainsworth M., 2000, PUR AP M-WI
  • [3] [Anonymous], 2015, ARXIV150506288
  • [4] Babuka I., 1991, Finite Element Methods (Part 1), Handbook of Numerical Analysis,, V2, P640
  • [5] ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) : 736 - 754
  • [6] A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) : 1597 - 1615
  • [7] Brenner S., 2007, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics
  • [8] Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
  • [9] CIARLET P. G., 2002, Classics in Appl. Math., V40
  • [10] ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR EIGENVALUE PROBLEMS ARISING IN INCOMPRESSIBLE FLUID FLOWS
    Cliffe, K. Andrew
    Hall, Edward J. C.
    Houston, Paul
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06) : 4607 - 4632