Generalized and facile synthesis of semiconducting metal sulfide nanocrystals

被引:612
作者
Joo, J
Na, HB
Yu, T
Yu, JH
Kim, YW
Wu, FX
Zhang, JZ
Hyeon, T [1 ]
机构
[1] Seoul Natl Univ, Natl Creat Res Initiat Ctr Oxide Nanocrystalline, Seoul 151744, South Korea
[2] Seoul Natl Univ, Sch Chem Engn, Seoul 151744, South Korea
[3] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea
[4] Univ Calif Santa Cruz, Dept Chem, Santa Cruz, CA 95064 USA
关键词
D O I
10.1021/ja0357902
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the synthesis of semiconductor nanocrystals of PbS, ZnS, CdS, and MnS through a facile and inexpensive synthetic process. Metal-oleylamine complexes, which were obtained from the reaction of metal chloride and oleylamine, were mixed with sulfur. The reaction-mixture was heated under appropriate experimental conditions to produce metal sulfide nanocrystals. Uniform cube-shaped PbS nanocrystals with particle sizes of 6, 8, 9, and 13 nm were synthesized. The particle size was controlled by changing the relative amount of PbCl2 and sulfur. Uniform 11 nm sized spherical ZnS nanocrystals were synthesized from the reaction of zinc chloride and sulfur, followed by one cycle of size-selective precipitation., CdS nanocrystals that consist of rods, bipods, and tripods were synthesized from a reaction mixture containing a 1:6 molar ratio of cadmium to sulfur. Spherical CdS nanocrystals (5.1 nm sized) were obtained from a reaction mixture with a cadmium to sulfur molar ratio of 2:1. MnS nanocrystals with various sizes and shapes were synthesized from the reaction of MnCl2 and sulfur in oleylamine. Rod-shaped MnS nanocrystals with an average size of 20 nm (thickness) x 37 nm (length) were synthesized from a 1:1 molar ratio of MnCl2 and sulfur at 240 degreesC. Novel bullet-shaped MnS nanocrystals with an average size of 17 nm (thickness) x 44 nm (length) were synthesized from the reaction of 4 mmol of MnCl2 and 2 mmol of sulfur at 280 degreesC for 2 h. Shorter bullet-shaped MnS nanocrystals were synthesized from a 3:1 molar ratio of MnCl2 and sulfur. Hexagon-shaped MnS nanocrystals were also obtained. All of the synthesized nanocrystals were highly crystalline.
引用
收藏
页码:11100 / 11105
页数:6
相关论文
共 58 条
  • [1] Semiconductor clusters, nanocrystals, and quantum dots
    Alivisatos, AP
    [J]. SCIENCE, 1996, 271 (5251) : 933 - 937
  • [2] THE QUANTUM-MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS (QUANTUM DOTS)
    BAWENDI, MG
    STEIGERWALD, ML
    BRUS, LE
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 : 477 - 496
  • [3] Semiconductor nanocrystals as fluorescent biological labels
    Bruchez, M
    Moronne, M
    Gin, P
    Weiss, S
    Alivisatos, AP
    [J]. SCIENCE, 1998, 281 (5385) : 2013 - 2016
  • [4] Quantum dot bioconjugates for ultrasensitive nonisotopic detection
    Chan, WCW
    Nie, SM
    [J]. SCIENCE, 1998, 281 (5385) : 2016 - 2018
  • [5] Alkanethiolate-protected PbS nanoclusters: Synthesis, spectroscopic and electrochemical studies
    Chen, SW
    Truax, LA
    Sommers, JM
    [J]. CHEMISTRY OF MATERIALS, 2000, 12 (12) : 3864 - 3870
  • [6] Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials
    Cumberland, SL
    Hanif, KM
    Javier, A
    Khitrov, GA
    Strouse, GF
    Woessner, SM
    Yun, CS
    [J]. CHEMISTRY OF MATERIALS, 2002, 14 (04) : 1576 - 1584
  • [7] Zinc chalcogenolate complexes as capping agents in the synthesis of ternary II-II′-VI nanoclusters:: Structure and photophysical properties of [(N,N′-tmeda)5Zn5Cd11Se13(SePh)6(thf)2]
    DeGroot, MW
    Taylor, NJ
    Corrigan, JF
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (04) : 864 - 865
  • [8] Fendler J. H., 1998, NANOPARTICLES NANOST
  • [9] Frank W. W., 2000, ACCOUNTS CHEM RES, V33, P773
  • [10] Linearly polarized emission from colloidal semiconductor quantum rods
    Hu, JT
    Li, LS
    Yang, WD
    Manna, L
    Wang, LW
    Alivisatos, AP
    [J]. SCIENCE, 2001, 292 (5524) : 2060 - 2063