Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy

被引:149
作者
Zhou, Chao [1 ]
Choe, Regine [1 ]
Shah, Natasha [2 ]
Durduran, Turgut [1 ,3 ]
Yu, Guoqiang [1 ]
Durkin, Amanda [2 ]
Hsiang, David [4 ]
Mehta, Rita [4 ]
Butler, John [4 ]
Cerussi, Albert [2 ]
Tromberg, Bruce J. [2 ]
Yodh, Arjun G. [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[2] Univ Calif Irvine, Beckman Laser Inst & Med Clin, Laser Microbeam & Med Program, Irvine, CA 92612 USA
[3] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[4] Univ Calif Irvine, Chao Family Comprehens Canc Ctr, Irvine, CA 92612 USA
关键词
breast cancer; diffuse correlation spectroscopy; blood flow; diffuse optical spectroscopy; neoadjuvant chemotherapy; early monitoring; oxygen metabolism;
D O I
10.1117/1.2798595
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We combine diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) to noninvasively monitor early hemodynamic response to neoadjuvant chemotherapy in a breast cancer patient. The potential for early treatment monitoring is demonstrated. Within the first week of treatment (day 7) DOS revealed significant changes in tumor/normal contrast compared to pretreatment (day 0) tissue concentrations of deoxyhemoglobin (rctHHb(T/N) = 69 +/- 21%), oxyhemoglobin (rctO(2)Hb(T/N) = 73 +/- 25%) , total hemoglobin (rctTHb(T/N)= 72 +/- 17%), and lipid concentration (rctLipid(T/N) = 116 +/- 13%). Similarly, DCS found significant changes in tumor/normal blood flow contrast (rBF(T/N) = 75 +/- 7% on day 7 with respect to day 0). Our observations suggest the combination of DCS and DOS enhances treatment monitoring compared to either technique alone. The hybrid approach also enables construction of indices reflecting tissue metabolic rate of oxygen, which may provide new insights about therapy mechanisms. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:11
相关论文
共 73 条
[31]   Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study [J].
Jakubowski, DB ;
Cerussi, AE ;
Bevilacqua, F ;
Shah, N ;
Hsiang, D ;
Butler, J ;
Tromberg, BJ .
JOURNAL OF BIOMEDICAL OPTICS, 2004, 9 (01) :230-238
[32]   Near-infrared optical imaging of the breast with model-based reconstruction [J].
Jiang, HB ;
Iftimia, NV ;
Xu, Y ;
Eggert, JA ;
Fajardo, LL ;
Klove, KL .
ACADEMIC RADIOLOGY, 2002, 9 (02) :186-194
[33]   THERMODYNAMIC METHOD FOR INVESTIGATION OF RADIATION-INDUCED CHANGES IN MICROCIRCULATION OF HUMAN TUMORS [J].
JOHNSON, R .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1976, 1 (7-8) :659-670
[34]   Concurrent optical imaging spectroscopy and laser-Doppler Flowmetry: The relationship between blood flow, oxygenation, and volume in rodent barrel cortex [J].
Jones, M ;
Berwick, J ;
Johnston, D ;
Mayhew, J .
NEUROIMAGE, 2001, 13 (06) :1002-1015
[35]   POSITRON EMISSION TOMOGRAPHY AND INVIVO MEASUREMENTS OF TUMOR PERFUSION AND OXYGEN UTILIZATION [J].
LAMMERTSMA, AA .
CANCER AND METASTASIS REVIEWS, 1987, 6 (04) :521-539
[36]   Tomographic optical breast imaging guided by three-dimensional mammography [J].
Li, A ;
Miller, EL ;
Kilmer, ME ;
Brukilacchio, TJ ;
Chaves, T ;
Stott, J ;
Zhang, Q ;
Wu, T ;
Chorlton, M ;
Moore, RH ;
Kopans, DB ;
Boas, DA .
APPLIED OPTICS, 2003, 42 (25) :5181-5190
[37]   Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy [J].
Li, J ;
Dietsche, G ;
Iftime, D ;
Skipetrov, SE ;
Maret, G ;
Elbert, T ;
Rockstroh, B ;
Gisler, T .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (04)
[38]   Color Doppler and duplex flow analysis for classification of breast lesions [J].
Madjar, H ;
Sauerbrei, W ;
Prompeler, HJ ;
Wolfarth, R ;
Gufler, H .
GYNECOLOGIC ONCOLOGY, 1997, 64 (03) :392-403
[39]  
Makris A, 1999, CANCER-AM CANCER SOC, V85, P1996
[40]  
Mandeville JB, 1999, MAGN RESON MED, V42, P944, DOI 10.1002/(SICI)1522-2594(199911)42:5<944::AID-MRM15>3.0.CO