Improving the surface charge density of a contact-separation-based triboelectric nanogenerator by modifying the surface morphology

被引:84
作者
Mahmud, M. A. Parvez [1 ]
Lee, JaeJong [1 ,2 ]
Kim, GeeHong [1 ,2 ]
Lim, HyungJun [1 ,2 ]
Choi, Kee-Bong [1 ,2 ]
机构
[1] Univ Sci & Technol, Dept Nano Mechatron, Daejeon 305350, South Korea
[2] Korea Inst Machinery & Mat, Nanoconvergence & Mech Syst Res Div, Daejeon 305343, South Korea
关键词
Triboelectric nanogenerator; Contact-separation; Surface charge density; Nanopattern; ELECTRIFICATION; ENERGY; GENERATOR; SENSORS; SYSTEMS;
D O I
10.1016/j.mee.2016.02.066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A triboelectric nanogenerator (TENG) based on the contact-separation mode can be used as a portable power source to harvest the triboelectrification which arises between contacting films. However, a general challenge is that the charge generation is usually limited. The performance of a TENG can be enhanced by modifying the surface morphologies of the triboelectric materials. In this study, we demonstrate morphologies with line, pillar and hexagonal cone shapes on the surfaces of PDMS and PMMA to enhance the charge production in a TENG. A contact and subsequent separation operation between the two surfaces of triboelectric materials is then carried out to generate the charge. Experiments reveal that the maximum output power, voltage and current density of a TENG with 300-nm hexagonal cone patterns on the contacting surfaces are nearly 22, three and six times greater than a TENG without any patterns, respectively. In addition, the results showed that pillar patterns with a smaller width generate higher output voltage, current and power levels compared to those with larger widths. As a result, the generation of the surface charge density in a TENG is augmented by the creation of nanopatterns on its contacting elements. This result will be applicable to the fabrication of a self-powered nanosystem with high efficiency at a low cost. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 107
页数:6
相关论文
共 19 条
[1]   Integrated Multi layered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions [J].
Bai, Peng ;
Zhu, Guang ;
Lin, Zong-Hong ;
Jing, Qingshen ;
Chen, Jun ;
Zhang, Gong ;
Ma, Jusheng ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (04) :3713-3719
[2]   The Mosaic of Surface Charge in Contact Electrification [J].
Baytekin, H. T. ;
Patashinski, A. Z. ;
Branicki, M. ;
Baytekin, B. ;
Soh, S. ;
Grzybowski, B. A. .
SCIENCE, 2011, 333 (6040) :308-312
[3]   SURFACE STATES AND BARRIER HEIGHT OF METAL-SEMICONDUCTOR SYSTEMS [J].
COWLEY, AM ;
SZE, SM .
JOURNAL OF APPLIED PHYSICS, 1965, 36 (10) :3212-&
[4]   A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties [J].
Diaz, AF ;
Felix-Navarro, RM .
JOURNAL OF ELECTROSTATICS, 2004, 62 (04) :277-290
[5]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[6]   Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films [J].
Fan, Feng-Ru ;
Lin, Long ;
Zhu, Guang ;
Wu, Wenzhuo ;
Zhang, Rui ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (06) :3109-3114
[7]   THE GENERATION OF STATIC CHARGE [J].
HARPER, WR .
ADVANCES IN PHYSICS, 1957, 6 (24) :365-417
[8]   CONTACT ELECTRIFICATION AND ADHESION BETWEEN DISSIMILAR MATERIALS [J].
HORN, RG ;
SMITH, DT .
SCIENCE, 1992, 256 (5055) :362-364
[9]   CONTACT ELECTRIFICATION INDUCED BY MONOLAYER MODIFICATION OF A SURFACE AND RELATION TO ACID-BASE INTERACTIONS [J].
HORN, RG ;
SMITH, DT ;
GRABBE, A .
NATURE, 1993, 366 (6454) :442-443
[10]   Transparent Flexible Graphene Triboelectric Nanogenerators [J].
Kim, Seongsu ;
Gupta, Manoj Kumar ;
Lee, Keun Young ;
Sohn, Ahrum ;
Kim, Tae Yun ;
Shin, Kyung-Sik ;
Kim, Dohwan ;
Kim, Sung Kyun ;
Lee, Kang Hyuck ;
Shin, Hyeon-Jin ;
Kim, Dong-Wook ;
Kim, Sang-Woo .
ADVANCED MATERIALS, 2014, 26 (23) :3918-3925