Development of disease-resistant rice by optimized expression of WRKY45

被引:67
作者
Goto, Shingo [1 ]
Sasakura-Shimoda, Fuyuko [1 ]
Suetsugu, Mai [1 ,2 ]
Selvaraj, Michael Gomez [3 ]
Hayashi, Nagao [1 ]
Yamazaki, Muneo [1 ]
Ishitani, Manabu [3 ]
Shimono, Masaki [1 ]
Sugano, Shoji [1 ]
Matsushita, Akane [1 ]
Tanabata, Takanari [4 ]
Takatsuji, Hiroshi [1 ,2 ]
机构
[1] Natl Inst Agrobiol Sci, Dis Resistant Crops Res Unit, Tsukuba, Ibaraki 3058602, Japan
[2] Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki, Japan
[3] Ctr Int Agr Trop, Cali, Colombia
[4] Natl Inst Agrobiol Sci, Agrogen Res Ctr, Tsukuba, Ibaraki, Japan
关键词
Oryza sativa; transcription factor; trade-off; salicylic acid; Magnaporthe oryzae; Xanthomonas oryzae; SYSTEMIC ACQUIRED-RESISTANCE; ACID SIGNALING PATHWAY; SALICYLIC-ACID; DROUGHT TOLERANCE; GENE-EXPRESSION; FUNCTIONAL-ANALYSIS; MAGNAPORTHE-GRISEA; POSITIVE REGULATOR; STRESS TOLERANCE; OPPOSITE ROLES;
D O I
10.1111/pbi.12303
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The rice transcription factor WRKY45 plays a central role in the salicylic acid signalling pathway and mediates chemical-induced resistance to multiple pathogens, including Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Previously, we reported that rice transformants overexpressing WRKY45 driven by the maize ubiquitin promoter were strongly resistant to both pathogens; however, their growth and yield were negatively affected because of the trade-off between the two conflicting traits. Also, some unknown environmental factor(s) exacerbated this problem. Here, we report the development of transgenic rice lines resistant to both pathogens and with agronomic traits almost comparable to those of wild-type rice. This was achieved by optimizing the promoter driving WRKY45 expression. We isolated 16 constitutive promoters from rice genomic DNA and tested their ability to drive WRKY45 expression. Comparisons among different transformant lines showed that, overall, the strength of WRKY45 expression was positively correlated with disease resistance and negatively correlated with agronomic traits. We conducted field trials to evaluate the growth of transgenic and control lines. The agronomic traits of two lines expressing WRKY45 driven by the OsUbi7 promoter (P-OsUbi7 lines) were nearly comparable to those of untransformed rice, and both lines were pathogen resistant. Interestingly, excessive WRKY45 expression rendered rice plants sensitive to low temperature and salinity, and stress sensitivity was correlated with the induction of defence genes by these stresses. These negative effects were barely observed in the P-OsUbi7 lines. Moreover, their patterns of defence gene expression were similar to those in plants primed by chemical defence inducers.
引用
收藏
页码:753 / 765
页数:13
相关论文
共 75 条
[1]   WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction [J].
Akagi, Aya ;
Fukushima, Setsuko ;
Okada, Kazunori ;
Jiang, Chang-Jie ;
Yoshida, Riichiro ;
Nakayama, Akira ;
Shimono, Masaki ;
Sugano, Shoji ;
Yamane, Hisakazu ;
Takatsuji, Hiroshi .
PLANT MOLECULAR BIOLOGY, 2014, 86 (1-2) :171-183
[2]   BREEDING RICE FOR RESISTANCE TO PESTS [J].
BONMAN, JM ;
KHUSH, GS ;
NELSON, RJ .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1992, 30 :507-528
[3]   Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J].
Cao, H ;
Li, X ;
Dong, XN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6531-6536
[4]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[5]   Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light [J].
Chern, M ;
Fitzgerald, HA ;
Canlas, PE ;
Navarre, DA ;
Ronald, PC .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2005, 18 (06) :511-520
[6]   Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis [J].
Chern, MS ;
Fitzgerald, HA ;
Yadav, RC ;
Canlas, PE ;
Dong, XN ;
Ronald, PC .
PLANT JOURNAL, 2001, 27 (02) :101-113
[7]   Priming as a mechanism in induced systemic resistance of plants [J].
Conrath, U ;
Thulke, O ;
Katz, V ;
Schwindling, S ;
Kohler, A .
EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2001, 107 (01) :113-119
[8]   Priming:: Getting ready for battle [J].
Conrath, Uwe ;
Beckers, Gerold J. M. ;
Flors, Victor ;
Garcia-Agustin, Pilar ;
Jakab, Gabor ;
Mauch, Felix ;
Newman, Mari-Anne ;
Pieterse, Corne M. J. ;
Poinssot, Benoit ;
Pozo, Maria J. ;
Pugin, Alain ;
Schaffrath, Ulrich ;
Ton, Jurriaan ;
Wendehenne, David ;
Zimmerli, Laurent ;
Mauch-Mani, Brigitte .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (10) :1062-1071
[9]   Hormone defense networking in rice: tales from a different world [J].
De Vleesschauwer, David ;
Gheysen, Godelieve ;
Hofte, Monica .
TRENDS IN PLANT SCIENCE, 2013, 18 (10) :555-565
[10]   Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling [J].
De Vleesschauwer, David ;
Yang, Yinong ;
Cruz, Casiana Vera ;
Hoefte, Monica .
PLANT PHYSIOLOGY, 2010, 152 (04) :2036-2052