Layer-by-layer self-assembly of TiO2 sol on wool to improve its anti-ultraviolet and anti-ageing properties

被引:22
作者
Liu, J. [1 ]
Wang, Q. [1 ]
Fan, X. R. [1 ]
机构
[1] Jiangnan Univ, Key Lab Sci & Technol Ecotext, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO2; sol; Wool; Layer-by-layer electrostatic self-assembly; Anti-ultraviolet; Anti-ageing; POLYELECTROLYTES; FILMS; NANOPARTICLE; DEPOSITION; ADSORPTION; COATINGS; TITANIA; SURFACE; SPHERES;
D O I
10.1007/s10971-012-2730-x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new method for improving the anti-ultraviolet and anti-ageing abilities of wool fabric was reported in this paper. TiO2 sols and poly (sodium 4-styrene-sulfonate) (PSS) were coated on the wool fibers via layer-by-layer (LBL) electrostatic self-assembly deposition. The morphologies and compositions of TiO2 sol-coated wool fabrics were characterized using SEM, surface Zeta potential, apparent color depth (K/S), ultraviolet (UV) transmission and alkali solubility. The SEM pictures showed that there were quite a few deposits absorbed on the wool surface. The dyeing depth and Zeta potential presented obvious "layer-layer alternate vibration" along with the change of deposited materials, revealing the surface structure of the assembled wool fiber. The results of ultraviolet (UV) transmission and alkali solubility indicated that the modified wool fabrics obtained good anti-ultraviolet and anti-ageing properties. In addition, the sol-assembled wool fabrics had good washing fastness. The studies proved that the LBL electrostatic self-assembly deposition is a promising way to endow the textiles with surface functionality.
引用
收藏
页码:338 / 343
页数:6
相关论文
共 23 条
[1]   Production of hollow microspheres from nanostructured composite particles [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
CHEMISTRY OF MATERIALS, 1999, 11 (11) :3309-3314
[2]   Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids [J].
Caruso, F ;
Möhwald, H .
LANGMUIR, 1999, 15 (23) :8276-8281
[3]  
Caruso F, 2001, ADV MATER, V13, P740, DOI 10.1002/1521-4095(200105)13:10<740::AID-ADMA740>3.0.CO
[4]  
2-6
[5]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[6]   Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres [J].
Caruso, RA ;
Susha, A ;
Caruso, F .
CHEMISTRY OF MATERIALS, 2001, 13 (02) :400-409
[7]   BUILDUP OF ULTRATHIN MULTILAYER FILMS BY A SELF-ASSEMBLY PROCESS .3. CONSECUTIVELY ALTERNATING ADSORPTION OF ANIONIC AND CATIONIC POLYELECTROLYTES ON CHARGED SURFACES [J].
DECHER, G ;
HONG, JD ;
SCHMITT, J .
THIN SOLID FILMS, 1992, 210 (1-2) :831-835
[8]   NEW NANOCOMPOSITE FILMS FOR BIOSENSORS - LAYER-BY-LAYER ADSORBED FILMS OF POLYELECTROLYTES, PROTEINS OR DNA [J].
DECHER, G ;
LEHR, B ;
LOWACK, K ;
LVOV, Y ;
SCHMITT, J .
BIOSENSORS & BIOELECTRONICS, 1994, 9 (9-10) :677-684
[9]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237
[10]  
Donath E, 1998, ANGEW CHEM INT EDIT, V37, P2202, DOI 10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO