Model-based non-Gaussian interest topic distribution for user retweeting in social networks

被引:6
作者
Li, Jianxin [1 ]
Wu, Nannan [1 ]
Feng, Zhirui [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
关键词
User interest; Information diffusion; Non-Gaussian topic distribution; Conceit; Altruism;
D O I
10.1016/j.neucom.2017.04.078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retweeting behavior is critical to dissect information diffusion, innovation propagation and events bursting in networks. However, because of the various contents of tweets, recent work mainly focuses on the influential relationship while unable to derive different pathways of information diffusion. Therefore, our work tries to reveal the pattern by tracking retweeting behavior through user interest and categories of tweets. The key for modeling user interest is modeling topic distribution of tweets, which have nonGaussian characteristics (e.g., power law distribution), thus we present the Latent Topics of user Interest (LTI) model which make full use of the non-Gaussian distribution of topics among tweets to uncover user interest and then predict users' possible actions. After dividing users into conceit users and altruism users by whether they have definite selection when retweeting, and categorizing tweets into repeated hot tweets and novel hot tweets by whether its topics always occur in the training set, we demonstrates a pattern-the conceit users promotes the diffusion of repeated hot tweets, whereas the altruism users expands the diffusion of novel hot tweets, and the pattern is evaluated by the correlation coefficient between types of users and tweets, which is greater than.61 for 10 and 100 million tweets of Weibo 2 and Twitter with respect to 70 and 58 thousand users over a period of one month.(C) 2017 Elsevier B.V. Allrightsreserved.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 39 条
[1]   Tracking information epidemics in blogspace [J].
Adar, E ;
Adamic, LA .
2005 IEEE/WIC/ACM International Conference on Web Intelligence, Proceedings, 2005, :207-214
[2]  
[Anonymous], 2010, P 16 ACM SIGKDD INT
[3]  
[Anonymous], 2012, Proceedings of the fifth ACM International Conference on Web Search and Data Mining
[4]  
[Anonymous], KDD09 15 ACM SIGKDD
[5]  
[Anonymous], 2004, INFORM DIFFUSION BLO, DOI DOI 10.1145/988672.988739
[6]  
[Anonymous], 2012, P 18 ACM SIGKDD INT, DOI [10.1145/956750.956769, DOI 10.1145/2339530.2339540]
[7]  
[Anonymous], ACM T INTELL SYST TE
[8]  
[Anonymous], 2003, PROC ACM SIGKDD INT
[9]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[10]   ORIGINS OF ATTITUDE IMPORTANCE - SELF-INTEREST, SOCIAL IDENTIFICATION, AND VALUE RELEVANCE [J].
BONINGER, DS ;
BERENT, MK ;
KROSNICK, JA .
JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 1995, 68 (01) :61-80