On the rational stabilizability of nonlinear systems by optimal feedback control: The bilinear case

被引:0
作者
Zaghdoudi, Maali [1 ]
Jammazi, Chaker [1 ,2 ]
机构
[1] Univ Carthage, Lab Ingn Math, Ecole Polytech Tunisie, Tunis, Tunisia
[2] Univ Carthage, Fac Sci Bizerte, Dept Math, Tunis, Tunisia
来源
2016 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT) | 2016年
关键词
Nonlinear systems; rational stability; Holderian feedbacks; optimal control; cost functional; STABILIZATION; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the problem of rational stabilizability of nonlinear control system by optimal feedback laws is considered. By using Hamilton-Jacobi-Belleman approach, some sufficient conditions are derived characterizing the rational stabilizability by optimal control for every dynamical control systems. As application, we have treated the example of bilinear control systems. A static stationary and optimal feedback laws are built stabilizing bilinear systems with the decay 1/t(alpha) where alpha > 0.
引用
收藏
页码:466 / 471
页数:6
相关论文
共 29 条
[1]  
BACCIOTTI A., 2005, Communications and Control Engineering Series, VSecond
[2]  
Bacciotti A., 2002, DIFF EQUAT, V10, P331
[3]  
Bacciotti A., 2001, STABILITY ANAL BASED, P315
[4]   Stabilizability of Finite- and Infinite-Dimensional Bilinear Systems [J].
Banks, S. P. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (04) :255-271
[5]  
Beauchard K., 2005, THESIS
[6]   NONQUADRATIC COST AND NONLINEAR FEEDBACK-CONTROL [J].
BERNSTEIN, DS .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1993, 3 (03) :211-229
[7]  
Celikovsky S., 1993, SYSTEMS CONTROL LETT, V21
[8]  
Chabour R., 1998, CR HEBD ACAD SCI, V326
[9]   STABILIZING CONTROLLERS FOR BILINEAR-SYSTEMS [J].
GUTMAN, PO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (04) :917-922
[10]  
Haddad W. M., 2014, 53 IEEE C DEC CONTR