Predicting Small Lesion Detectability for a Small Animal TOF PET Scanner

被引:0
作者
Yussefian, Nikta Zarif [1 ,2 ]
Gaudin, Emilie [3 ,4 ]
Lecomte, Roger [3 ,4 ]
Fontaine, Rejean [1 ,2 ]
机构
[1] Univ Sherbrooke, Dept Elect & Comp Engn, Sherbrooke, PQ J1K 0A5, Canada
[2] Univ Sherbrooke, Interdisciplinary Inst Technol Innovat 3IT, Sherbrooke, PQ J1K 0A5, Canada
[3] Univ Sherbrooke, Sherbrooke Mol Imaging Ctr, Sherbrooke, PQ J1H 5N4, Canada
[4] Univ Sherbrooke, Dept Nucl Med & Radiobiol, Sherbrooke, PQ J1H 5N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Medical image analysis; regression analysis; contrast-to-noise ratio (CNR); mathematical model; supervised learning; TIME-OF-FLIGHT; RESOLUTION; SIMULATION; CT;
D O I
10.1109/TRPMS.2021.3105945
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
One way to enhance lesion detectability in small animal positron emission tomography (PET) would be to improve the coincidence time resolution (CTR) significantly relative to the current state of the art. This may soon become a real opportunity with the recent launch of the worldwide 10 ps challenge. Shorter crystals may be needed to improve timing performance by reducing the scintillation transit time spread. Although this comes at the cost of sensitivity loss, the time-of-flight (TOF) gain may allow to compromise on sensitivity without degrading imaging performance. As the main advantage of TOF is to enhance contrast-to-noise ratio (CNR), there is a motivation to assess the tradeoffs between crystal length and TOF resolution on the lesion detectability through a quantitative model. To derive such a model, a set of simulations was performed using the LabPET II mouse-version scanner with GATE and NEMA NU4 standards. The images were reconstructed using the CASToR software for tomographic reconstruction. The CNR was evaluated through a factorial design and its outcomes used to derive a model to assess the CNR performance as a function of crystal length, TOF resolution, and lesion size using a polynomial regression with multiple variables. As expected, results showed that CNR performance has positive correlations with lesion size and gain in TOF resolution and a negative correlation with crystal length. This leads to a predictive model that estimates the CNR performance with a mean-squared error of 0.69.
引用
收藏
页码:601 / 608
页数:8
相关论文
共 41 条
[21]   GATE:: a simulation toolkit for PET and SPECT [J].
Jan, S ;
Santin, G ;
Strul, D ;
Staelens, S ;
Assié, K ;
Autret, D ;
Avner, S ;
Barbier, R ;
Bardiès, M ;
Bloomfield, PM ;
Brasse, D ;
Breton, V ;
Bruyndonckx, P ;
Buvat, I ;
Chatziioannou, AF ;
Choi, Y ;
Chung, YH ;
Comtat, C ;
Donnarieix, D ;
Ferrer, L ;
Glick, SJ ;
Groiselle, CJ ;
Guez, D ;
Honore, PF ;
Kerhoas-Cavata, S ;
Kirov, AS ;
Kohli, V ;
Koole, M ;
Krieguer, M ;
van der Laan, DJ ;
Lamare, F ;
Largeron, G ;
Lartizien, C ;
Lazaro, D ;
Maas, MC ;
Maigne, L ;
Mayet, F ;
Melot, F ;
Merheb, C ;
Pennacchio, E ;
Perez, J ;
Pietrzyk, U ;
Rannou, FR ;
Rey, M ;
Schaart, DR ;
Schmidtlein, CR ;
Simon, L ;
Song, TY ;
Vieira, JM ;
Visvikis, D .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (19) :4543-4561
[22]   GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy [J].
Jan, S. ;
Benoit, D. ;
Becheva, E. ;
Carlier, T. ;
Cassol, F. ;
Descourt, P. ;
Frisson, T. ;
Grevillot, L. ;
Guigues, L. ;
Maigne, L. ;
Morel, C. ;
Perrot, Y. ;
Rehfeld, N. ;
Sarrut, D. ;
Schaart, D. R. ;
Stute, S. ;
Pietrzyk, U. ;
Visvikis, D. ;
Zahra, N. ;
Buvat, I. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (04) :881-901
[23]  
Lecoq P, 2017, IEEE T RADIAT PLASMA, V1, P473, DOI 10.1109/TRPMS.2017.2756674
[24]   Roadmap toward the 10 ps time-of-flight PET challenge [J].
Lecoq, Paul ;
Morel, Christian ;
Prior, John O. ;
Visvikis, Dimitris ;
Gundacker, Stefan ;
Auffray, Etiennette ;
Krizan, Peter ;
Turtos, Rosana Martinez ;
Thers, Dominique ;
Charbon, Edoardo ;
Varela, Joao ;
de la Taille, Christophe ;
Rivetti, Angelo ;
Breton, Dominique ;
Pratte, Jean-Francois ;
Nuyts, Johan ;
Surti, Suleman ;
Vandenberghe, Stefaan ;
Marsden, Paul ;
Parodi, Katia ;
Benlloch, Jose Maria ;
Benoit, Mathieu .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (21)
[25]   CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction [J].
Merlin, Thibaut ;
Stute, Simon ;
Benoit, Didier ;
Bert, Julien ;
Carlier, Thomas ;
Comtat, Claude ;
Filipovic, Marina ;
Lamare, Frederic ;
Visvikis, Dimitris .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (18)
[26]   Fundamental limits of spatial resolution in PET [J].
Moses, William W. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 648 :S236-S240
[27]   Time of flight in PET revisited [J].
Moses, WW .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (05) :1325-1330
[28]   Coincidence time resolution of 30 ps FWHM using a pair of Cherenkov-radiator-integrated MCP-PMTs [J].
Ota, R. ;
Nakajima, K. ;
Ogawa, I ;
Tamagawa, Y. ;
Shimoi, H. ;
Suyama, M. ;
Hasegawa, T. .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (07)
[29]  
Pratte J.F., 2018, Instruments, V2, DOI [DOI 10.3390/INSTRUMENTS2040019, 10.3390/instruments2040019, DOI 10.3390/instruments2040019]
[30]   3D Photon-To-Digital Converter for Radiation Instrumentation: Motivation and Future Works [J].
Pratte, Jean-Francois ;
Nolet, Frederic ;
Parent, Samuel ;
Vachon, Frederic ;
Roy, Nicolas ;
Rossignol, Tommy ;
Deslandes, Keven ;
Dautet, Henri ;
Fontaine, Rejean ;
Charlebois, Serge A. .
SENSORS, 2021, 21 (02) :1-31