Mendelian Randomization analysis of the causal effect of adiposity on hospital costs

被引:31
作者
Dixon, Padraig [1 ,2 ]
Hollingworth, William [1 ]
Harrison, Sean [1 ,2 ]
Davies, Neil M. [1 ,2 ]
Smith, George Davey [1 ,2 ,3 ]
机构
[1] Univ Bristol, Populat Hlth Sci, Oakfield House, Bristol BS8 2BN, Avon, England
[2] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, Avon, England
[3] Univ Bristol, NIHR Biomed Res Ctr, Bristol, Avon, England
基金
英国医学研究理事会;
关键词
BMI; Obesity; Instrumental variables; Healthcare costs; Mendelian Randomization; BODY-MASS INDEX; GENOME-WIDE-ASSOCIATION; INSTRUMENTAL VARIABLES; UK BIOBANK; GENETIC EPIDEMIOLOGY; ECONOMIC BURDEN; CARE COSTS; OBESITY; HEALTH; BIAS;
D O I
10.1016/j.jhealeco.2020.102300
中图分类号
F [经济];
学科分类号
02 ;
摘要
Estimates of the marginal effect of measures of adiposity such as body mass index (BMI) on healthcare costs are important for the formulation and evaluation of policies targeting adverse weight profiles. Most estimates of this association are affected by endogeneity bias. We use a novel identification strategy exploiting Mendelian Randomization - random germline genetic variation modelled using instrumental variables - to identify the causal effect of BMI on inpatient hospital costs. Using data on over 300,000 individuals, the effect size per person per marginal unit of BMI per year varied according to specification, including 21.22 pound (95% confidence interval (CI): 14.35- pound 28.07) pound for conventional inverse variance weighted models to 18.85 pound (95% CI: 9.05- pound 28.65) pound for penalized weighted median models. Effect sizes from Mendelian Randomization models were larger in most cases than noninstrumental variable multivariable adjusted estimates (13.47 pound, 95% CI: 12.51- pound 14.43) pound. There was little evidence of non-linearity. Within-family estimates, intended to address dynastic biases, were imprecise. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:22
相关论文
共 136 条
[41]  
Burgess S, 2017, EUR J EPIDEMIOL, V32, P377, DOI 10.1007/s10654-017-0255-x
[42]  
Burgess S, 2015, AM J EPIDEMIOL, V181, P251, DOI 10.1093/aje/kwu283
[43]   Using Multivariable Mendelian Randomization to Disentangle the Causal Effects of Lipid Fractions [J].
Burgess, Stephen ;
Freitag, Daniel F. ;
Khan, Hassan ;
Gorman, Donal N. ;
Thompson, Simon G. .
PLOS ONE, 2014, 9 (10)
[44]   Use of Mendelian randomisation to assess potential benefit of clinical intervention [J].
Burgess, Stephen ;
Butterworth, Adam ;
Malarstig, Anders ;
Thompson, Simon G. .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 345
[45]   Beyond BMI: The value of more accurate measures of fatness and obesity in social science research [J].
Burkhauser, Richard V. ;
Cawley, John .
JOURNAL OF HEALTH ECONOMICS, 2008, 27 (02) :519-529
[46]   Chapter 11: Genome-Wide Association Studies [J].
Bush, William S. ;
Moore, Jason H. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (12)
[47]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[48]   Population stratification and spurious allelic association [J].
Cardon, LR ;
Palmer, LJ .
LANCET, 2003, 361 (9357) :598-604
[49]   Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank [J].
Carreras-Torres, Robert ;
Johansson, Mattias ;
Haycock, Philip C. ;
Relton, Caroline L. ;
Smith, George Davey ;
Brennan, Paul ;
Martin, Richard M. .
BMJ-BRITISH MEDICAL JOURNAL, 2018, 361
[50]   Reporting error in weight and its implications for bias in economic models [J].
Cawley, John ;
Maclean, Johanna Catherine ;
Hammer, Mette ;
Wintfeld, Neil .
ECONOMICS & HUMAN BIOLOGY, 2015, 19 :27-44