The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four

被引:15
作者
Arioli, Gianni [1 ]
Gazzola, Filippo [1 ]
Grunau, Hans-Christoph [2 ]
Sassone, Edoardo [2 ]
机构
[1] Dipartimento Mat Politecn, I-20133 Milan, Italy
[2] Otto VonGuericke Univ Magdegurg, D-39016 Magdeburg, Germany
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2008年 / 15卷 / 1-2期
关键词
Brezis-Nirenberg problem; critical growth; resonant problem; nonexistence; radial solutions;
D O I
10.1007/s00030-007-6034-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence results available for the semilinear Brezis-Nirenberg eigenvalue problem suggest that the compactness problems for the corresponding action functionals are more serious in small dimensions. In space dimension n = 3, one can even prove nonexistence of positive solutions in a certain range of the eigenvalue parameter. In the present paper we study a nonexistence phenomenon manifesting such compactness problems also in dimension n = 4. We consider the equation - Delta u = lambda u + u(3) in the unit ball of R(4) under Dirichlet boundary conditions. We study the bifurcation branch arising from the second radial eigenvalue of -Delta. It is known that it tends asymptotically to the first eigenvalue as the L(infinity)-norm of the solution tends to blow up. Contrary to what happens in space dimension n = 5, we show that it does not cross the first eigenvalue. In particular, the mentioned Dirichlet problem in n = 4 does not admit a nontrivial radial solution when lambda coincides with the first eigenvalue.
引用
收藏
页码:69 / 90
页数:22
相关论文
共 16 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   A NOTE ON THE PROBLEM -DELTA-U=+U/U/2-STAR-2 [J].
AMBROSETTI, A ;
STRUWE, M .
MANUSCRIPTA MATHEMATICA, 1986, 54 (04) :373-379
[3]  
ARIOLI G, ADA FILES CAN BE DOW
[4]   Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Grunau, Hans-Christoph .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (02) :743-770
[5]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[6]   EMDEN-FOWLER EQUATIONS INVOLVING CRITICAL EXPONENTS [J].
ATKINSON, FV ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (08) :755-776
[7]  
Atkinson FV., 1988, ASYMPTOTIC ANAL, V1, P139, DOI [10.3233/asy-1988-1204, DOI 10.3233/ASY-1988-1204]
[8]  
ATKINSON FV, 1990, DIFFERENTIAL INTEGRA, V3, P401
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470