Convergence analysis of positive-indefinite proximal ADMM with a Glowinski's relaxation factor

被引:15
作者
Chen, Jiawei [1 ]
Wang, Yiyun [1 ]
He, Hongjin [2 ]
Lv, Yibing [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[3] Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Peoples R China
关键词
Separable convex programming; Alternating direction method of multipliers; Augmented Lagrangian method; Convergence rate; Variational inequalities; ALTERNATING DIRECTION METHOD; SPLITTING METHOD; ALGORITHM;
D O I
10.1007/s11075-019-00731-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a modified positive-indefinite proximal linearized ADMM (PIPL-ADMM) with a larger Glowinski's relaxation factor for solving two-block linearly constrained separable convex programming by variational inequality technique. We investigate the internal relationships between the step size coefficient and the penalty coefficient to identify the convergence of PIPL-ADMM. The convergence of PIPL-ADMM and its convergence rate measured by the iteration complexity are established in the ergodic case. Numerical experiments are reported to illustrate the efficiency of the proposed methods.
引用
收藏
页码:1415 / 1440
页数:26
相关论文
共 30 条
  • [1] [Anonymous], MACHINE LEARNING, DOI DOI 10.1007/s10994-014-5469-5
  • [2] [Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70028-6
  • [3] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [4] Alternating Direction Method for Image Inpainting in Wavelet Domains
    Chan, Raymond H.
    Yang, Junfeng
    Yuan, Xiaoming
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (03): : 807 - 826
  • [5] Asynchronous Distributed ADMM for Large-Scale Optimization-Part II: Linear Convergence Analysis and Numerical Performance
    Chang, Tsung-Hui
    Liao, Wei-Cheng
    Hong, Mingyi
    Wang, Xiangfeng
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (12) : 3131 - 3144
  • [6] Fast Solution of l1-Norm Minimization Problems When the Solution May Be Sparse
    Donoho, David L.
    Tsaig, Yaakov
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 4789 - 4812
  • [7] Gabay D., 1976, Computers & Mathematics with Applications, V2, P17, DOI 10.1016/0898-1221(76)90003-1
  • [8] GLOWINSKI R, 1975, REV FR AUTOMAT INFOR, V9, P41
  • [9] An ADM-based splitting method for separable convex programming
    Han, Deren
    Yuan, Xiaoming
    Zhang, Wenxing
    Cai, Xingju
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 54 (02) : 343 - 369
  • [10] A Note on the Alternating Direction Method of Multipliers
    Han, Deren
    Yuan, Xiaoming
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (01) : 227 - 238