About Weak-Strong Uniqueness for the 3D Incompressible Navier-Stokes System

被引:17
作者
Chemin, Jean-Yves [1 ]
机构
[1] Univ Paris 06, Lab JL Lions UMR 7598, F-75013 Paris, France
关键词
EQUATIONS;
D O I
10.1002/cpa.20386
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies the problem of L(2) stability and weak-strong uniqueness of solutions of the incompressible Navier-Stokes on the whole space R(3) constructed by Kato's approach in spaces coming from Littlewood-Paley theory and using the L(1) smoothing effect for the heat flow. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1587 / 1598
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 2006, OXFORD LECT SERIES M
[2]  
Cannone M., 1994, SEM EQ DER PART 1993
[3]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[4]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[5]   On global infinite energy solutions to the Navier-Stokes equations in two dimensions [J].
Gallagher, I ;
Planchon, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 161 (04) :307-337
[6]   Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations [J].
Germain, Pierre .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (02) :373-428
[7]   Well-posedness for the Navier-Stokes equations [J].
Koch, H ;
Tataru, D .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :22-35
[8]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[10]  
Oseen CW., 1912, Acta Math, V35, P97, DOI [10.1007/BF02418815, DOI 10.1007/BF02418815]