Mapping determinants of human gene expression by regional and genome-wide association

被引:443
作者
Cheung, VG [1 ]
Spielman, RS
Ewens, KG
Weber, TM
Morley, M
Burdick, JT
机构
[1] Univ Penn, Dept Pediat, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Genet, Philadelphia, PA 19104 USA
[3] Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA
关键词
D O I
10.1038/nature04244
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To study the genetic basis of natural variation in gene expression, we previously carried out genome-wide linkage analysis and mapped the determinants of similar to 1,000 expression phenotypes(1). In the present study, we carried out association analysis with dense sets of single-nucleotide polymorphism ( SNP) markers from the International HapMap Project(2). For 374 phenotypes, the association study was performed with markers only from regions with strong linkage evidence; these regions all mapped close to the expressed gene. For a subset of 27 phenotypes, analysis of genome-wide association was performed with > 770,000 markers. The association analysis with markers under the linkage peaks confirmed the linkage results and narrowed the candidate regulatory regions for many phenotypes with strong linkage evidence. The genome-wide association analysis yielded highly significant results that point to the same locations as the genome scans for about 50% of the phenotypes. For one candidate determinant, we carried out functional analyses and confirmed the variation in cis-acting regulatory activity. Our findings suggest that association studies with dense SNP maps will identify susceptibility loci or other determinants for some complex traits or diseases.
引用
收藏
页码:1365 / 1369
页数:5
相关论文
共 22 条
[1]   Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies [J].
Ball, RD .
GENETICS, 2005, 170 (02) :859-873
[2]   Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease [J].
Botstein, D ;
Risch, N .
NATURE GENETICS, 2003, 33 (Suppl 3) :228-237
[3]   Genetic dissection of transcriptional regulation in budding yeast [J].
Brem, RB ;
Yvert, G ;
Clinton, R ;
Kruglyak, L .
SCIENCE, 2002, 296 (5568) :752-755
[4]   Mapping complex disease loci in whole-genome association studies [J].
Carlson, CS ;
Eberle, MA ;
Kruglyak, L ;
Nickerson, DA .
NATURE, 2004, 429 (6990) :446-452
[5]   Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease [J].
Carrasquillo, MM ;
McCallion, AS ;
Puffenberger, EG ;
Kashuk, CS ;
Nouri, N ;
Chakravarti, A .
NATURE GENETICS, 2002, 32 (02) :237-244
[6]   The genetics of variation in gene expression [J].
Cheung, VG ;
Spielman, RS .
NATURE GENETICS, 2002, 32 (Suppl 4) :522-525
[7]   Natural variation in human gene expression assessed in lymphoblastoid cells [J].
Cheung, VG ;
Conlin, LK ;
Weber, TM ;
Arcaro, M ;
Jen, KY ;
Morley, M ;
Spielman, RS .
NATURE GENETICS, 2003, 33 (03) :422-425
[8]   The International HapMap Project [J].
Gibbs, RA ;
Belmont, JW ;
Hardenbol, P ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Ch'ang, LY ;
Huang, W ;
Liu, B ;
Shen, Y ;
Tam, PKH ;
Tsui, LC ;
Waye, MMY ;
Wong, JTF ;
Zeng, CQ ;
Zhang, QR ;
Chee, MS ;
Galver, LM ;
Kruglyak, S ;
Murray, SS ;
Oliphant, AR ;
Montpetit, A ;
Hudson, TJ ;
Chagnon, F ;
Ferretti, V ;
Leboeuf, M ;
Phillips, MS ;
Verner, A ;
Kwok, PY ;
Duan, SH ;
Lind, DL ;
Miller, RD ;
Rice, JP ;
Saccone, NL ;
Taillon-Miller, P ;
Xiao, M ;
Nakamura, Y ;
Sekine, A ;
Sorimachi, K ;
Tanaka, T ;
Tanaka, Y ;
Tsunoda, T ;
Yoshino, E ;
Bentley, DR ;
Deloukas, P ;
Hunt, S ;
Powell, D ;
Altshuler, D ;
Gabriel, SB ;
Qiu, RZ .
NATURE, 2003, 426 (6968) :789-796
[9]   Finding genes that underlie complex traits [J].
Glazier, AM ;
Nadeau, JH ;
Aitman, TJ .
SCIENCE, 2002, 298 (5602) :2345-2349
[10]   Genome-wide association studies for common diseases and complex traits [J].
Hirschhorn, JN ;
Daly, MJ .
NATURE REVIEWS GENETICS, 2005, 6 (02) :95-108