Theoretical study of the three-dimensional quantum Hall effect in a periodic electron system

被引:4
作者
Geng, H. [1 ,2 ,3 ]
Qi, G. Y. [1 ,2 ]
Sheng, L. [1 ,2 ,3 ]
Chen, W. [1 ,2 ,3 ]
Xing, D. Y. [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
MAGNETIC-FIELDS; SURFACE-STATES; GAS; TRANSITION; TRANSPORT; PHASE;
D O I
10.1103/PhysRevB.104.205305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The existence of a three-dimensional quantum Hall effect (3D QHE) due to spontaneous Fermi surface instabilities in strong magnetic fields was proposed decades ago, and has stimulated recent progress in experiments. The reports in recent experiments show that the Hall plateaus and vanishing transverse magnetoresistivities (TMRs) (which are two main signatures of 3D QHE) are not easily observed in natural materials. Two main explanations for the slowly varying slopelike Hall plateaus and nonvanishing TMRs [which can be referred to as the quasiquantized Hall effect (QQHE)] have been proposed. By studying the magnetotransport with a simple effective periodic 3D system, we show how 3D QHE can be achieved in certain parameter regimes. We find two mechanisms that may give rise to QQHE. One mechanism is the "low" Fermi energy effect, and the other is the "strong" impurity effect. Our studies also prove that an artificial superlattice is an ideal platform for realizing 3D QHE with a high layer barrier periodic potential.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Effect of a periodic modulation on edge magnetoplasmons in the quantum Hall regime
    Balev, OG
    Studart, N
    Vasilopoulos, P
    PHYSICA E, 2000, 6 (1-4): : 569 - 572
  • [32] Quantum oscillations in three-dimensional topological insulators
    Vedeneev, S. I.
    PHYSICS-USPEKHI, 2017, 60 (04) : 385 - 401
  • [33] Intrinsic spin Hall conductivity in three-dimensional topological insulator/normal insulator heterostructures
    Men'shov, V. N.
    Shvets, I. A.
    Tugushev, V. V.
    Chulkov, E. V.
    PHYSICAL REVIEW B, 2017, 96 (07)
  • [34] Quantum transport study in three-dimensional topological insulator BiSbTeSe2
    Xu, Yang
    Chen, Yong P.
    TOPOLOGICAL INSULATOR AND RELATED TOPICS, 2021, 108 : 73 - 124
  • [35] Quantum Hall effect in a high-mobility two-dimensional electron gas on the surface of a cylinder
    Friedland, K. -J.
    Siddiki, A.
    Hey, R.
    Kostial, H.
    Riedel, A.
    Maude, D. K.
    PHYSICAL REVIEW B, 2009, 79 (12)
  • [36] Periodic Landau gauge and quantum Hall effect in twisted bilayer graphene
    Hasegawa, Yasumasa
    Kohmoto, Mahito
    PHYSICAL REVIEW B, 2013, 88 (12):
  • [37] Spectral function of the three-dimensional system of massless Dirac electrons
    Losic, Zeljana Bonacic
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 85 : 199 - 205
  • [38] Three-dimensional quasiquantized Hall insulator phase in SrSi2
    Manna, K.
    Kumar, N.
    Chattopadhyay, S.
    Noky, J.
    Yao, M.
    Park, J.
    Foerster, T.
    Uhlarz, M.
    Chakraborty, T.
    Schwarze, B. V.
    Hornung, J.
    Strocov, V. N.
    Borrmann, H.
    Shekhar, C.
    Sun, Y.
    Bose, S. N.
    Wosnitza, J.
    Felser, C.
    Gooth, J.
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [39] Insulating state to quantum Hall-like state transition in a spin-orbit-coupled two-dimensional electron system
    Lo, Shun-Tsung
    Hsu, Chang-Shun
    Lin, Y. M.
    Lin, S-D
    Lee, C. P.
    Ho, Sheng-Han
    Chuang, Chiashain
    Wang, Yi-Ting
    Liang, C-T
    APPLIED PHYSICS LETTERS, 2014, 105 (01)
  • [40] Superconducting quantum criticality in three-dimensional Luttinger semimetals
    Boettcher, Igor
    Herbut, Igor F.
    PHYSICAL REVIEW B, 2016, 93 (20)