Farey Sequences for Thin Groups

被引:4
|
作者
Lutsko, Christopher [1 ]
机构
[1] Univ Bristol, Math Dept, Bristol BS8 1QU, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
ORBITS; SZUSZ; TURAN; ERDOS;
D O I
10.1093/imrn/rnab036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Farey sequence is the set of rational numbers with bounded denominator. We introduce the concept of a generalized Farey sequence. While these sequences arise naturally in the study of discrete and thin subgroups, they can be used to study interesting number theoretic sequences-for example rationals whose continued fraction partial quotients are subject to congruence conditions. We show that these sequences equidistribute and the gap distribution converges and answer an associated problem in Diophantine approximation. Moreover, for one example, we derive an explicit formula for the gap distribution. For this example, we construct the analogue of the Gauss measure, which is ergodic for the Gauss map. This allows us to prove a theorem about the associated Gauss-Kuzmin statistics.
引用
收藏
页码:11642 / 11689
页数:48
相关论文
共 50 条
  • [41] On Potentially C2,6-graphic Sequences
    Li, Haiyan
    Lai, Chunhui
    ARS COMBINATORIA, 2015, 122 : 333 - 354
  • [42] On Potentially 3-regular graph graphic Sequences
    Hu, Lili
    Lai, Chunhui
    UTILITAS MATHEMATICA, 2009, 80 : 33 - 51
  • [43] Potentially Km-G-graphical sequences: A survey
    Lai, Chunhui
    Hu, Lili
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 1059 - 1075
  • [44] Laguerre multiplier sequences and sector properties of entire functions
    Chasse, Matthew
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (07) : 875 - 885
  • [45] On Sets Containing an Affine Copy of Bounded Decreasing Sequences
    Yang, Tongou
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (05)
  • [46] On Bialostocki's conjecture for zero-sum sequences
    Guo, Song
    Sun, Zhi-Wei
    ACTA ARITHMETICA, 2009, 140 (04) : 329 - 334
  • [47] ON JORDAN CLASSES FOR VINBERG'S θ-GROUPS
    Carnovale, Giovanna
    Esposito, Francesco
    Santi, Andrea
    TRANSFORMATION GROUPS, 2023, 28 (01) : 151 - 183
  • [48] Spherical birational sheets in reductive groups
    Ambrosio, Filippo
    Costantini, Mauro
    JOURNAL OF ALGEBRA, 2021, 587 : 488 - 521
  • [49] GALOIS AND CARTAN COHOMOLOGY OF REAL GROUPS
    Adams, Jeffrey
    Taibi, Olivier
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (06) : 1057 - 1097
  • [50] Associated varieties for real reductive groups
    Adams, Jeffrey
    Vogan, David A., Jr.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (04) : 1191 - 1267