Farey Sequences for Thin Groups

被引:4
|
作者
Lutsko, Christopher [1 ]
机构
[1] Univ Bristol, Math Dept, Bristol BS8 1QU, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
ORBITS; SZUSZ; TURAN; ERDOS;
D O I
10.1093/imrn/rnab036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Farey sequence is the set of rational numbers with bounded denominator. We introduce the concept of a generalized Farey sequence. While these sequences arise naturally in the study of discrete and thin subgroups, they can be used to study interesting number theoretic sequences-for example rationals whose continued fraction partial quotients are subject to congruence conditions. We show that these sequences equidistribute and the gap distribution converges and answer an associated problem in Diophantine approximation. Moreover, for one example, we derive an explicit formula for the gap distribution. For this example, we construct the analogue of the Gauss measure, which is ergodic for the Gauss map. This allows us to prove a theorem about the associated Gauss-Kuzmin statistics.
引用
收藏
页码:11642 / 11689
页数:48
相关论文
共 50 条
  • [31] Graphic sequences with a realization containing intersecting cliques
    Yin, Jian Hua
    Deng, Yan Fang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (02) : 405 - 416
  • [32] J-Class Sequences of Linear Operators
    Azimi, M. R.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (01) : 293 - 303
  • [33] On orbits of automorphism groups II
    Deaconescu, Marian
    Walls, Gary L.
    ARCHIV DER MATHEMATIK, 2009, 92 (03) : 200 - 205
  • [34] CLASSIFICATION OF JOININGS FOR KLEINIAN GROUPS
    Mohammadi, Amir
    Oh, Hee
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (11) : 2155 - 2223
  • [35] On the Kinematic Star Groups in the Pleiades
    Danilov, V. M.
    ASTROPHYSICAL BULLETIN, 2021, 76 (03) : 269 - 285
  • [36] On orbits of automorphism groups II
    Marian Deaconescu
    Gary L. Walls
    Archiv der Mathematik, 2009, 92 : 200 - 205
  • [37] OBSERVABLE ACTIONS OF ALGEBRAIC GROUPS
    Renner, Lex
    Rittatore, Alvaro
    TRANSFORMATION GROUPS, 2009, 14 (04) : 985 - 999
  • [38] Rowmotion and generalized toggle groups
    Striker, Jessica
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01)
  • [39] On the orbits of automaton semigroups and groups
    D'Angeli, D.
    Francoeur, D.
    Rodaro, E.
    Waechter, J. Ph
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 33 (01): : 1 - 29
  • [40] Jensen polynomials for the Riemann zeta function and other sequences
    Griffin, Michael
    Ono, Ken
    Rolen, Larry
    Zagier, Don
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (23) : 11103 - 11110